|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2024 Vol.25 No.8 P.618-630
New formula for predicting the plastic buckling pressure of steel torispherical heads under internal pressure
Abstract: Thin-walled torispherical heads under internal pressure can fail by plastic buckling because of compressive circumferential stresses in the head knuckle. However, existing formulas still have limitations, such as complicated expressions and low accuracy, in determining buckling pressure. In this paper, we propose a new formula for calculating the buckling pressure of torispherical heads based on elastic-plastic analysis and experimental results. First, a finite element (FE) method based on the arc-length method is established to calculate the plastic buckling pressure of torispherical heads, considering the effects of material strain hardening and geometrical nonlinearity. The buckling pressure results calculated by the FE method in this paper have good consistency with those of BOSOR5, which is a program for calculating the elastic-plastic bifurcation buckling pressure based on the finite difference energy method. Second, the effects of geometric parameters, material parameters, and restraint form of head edge on buckling pressure are investigated. Third, a new formula for calculating plastic buckling pressure is developed by fitting the curve of FE results and introducing a reduction factor determined from experimental data. Finally, based on the experimental results, we compare the predictions of the new formula with those of existing formulas. It is shown that the new formula has a higher accuracy than the existing ones.
Key words: Torispherical head; Plastic buckling; Elastic-plastic analysis; Prediction formula; Finite element method
机构:1浙江大学,化工机械研究所,中国杭州,310027;2浙江大学,高压过程装备与安全教育部工程研究中心,中国杭州,310027;3浙江大学,流体动力与机电系统国家重点实验室,中国杭州,310058
目的:屈曲是内压碟形封头的重要失效模式。已有的碟形封头屈曲压力计算公式存在计算精度低、适用范围窄、计算过程繁琐等问题。本文旨在提出具有更高精度和更强适用性的钢制碟形封头屈曲压力计算新公式,为建立内压碟形封头抗屈曲设计方法提供支撑。
创新点:已有公式基于弹性理论或理想弹塑性理论,未考虑材料应变硬化影响。本文基于考虑几何非线性和材料应变硬化的非线性屈曲有限元分析方法,并经大量工业规模封头屈曲试验数据修正,提出了钢制碟形封头屈曲压力计算新公式,相比已有公式具有更高精度与更强适用性。
方法:1.采用基于弧长法的非线性增量有限元方法,建立考虑材料应变硬化和几何非线性的钢制碟形封头屈曲压力计算模型(图4)。2.利用该模型开展钢制碟形封头屈曲压力参数化计算,探明封头几何参数、材料参数等对其屈曲压力的影响规律(图5和7),并结合有限元计算结果和大量工业规模封头屈曲压力试验数据,提出碟形封头屈曲压力计算新公式(公式(16))。
结论:1.钢制碟形封头在内压下发生塑性屈曲,其屈曲压力随封头径厚比(Di/t)、球冠区半径与内径比(Ri/Di)的增大而减小,随过渡区半径与内径比(r/Di)的减小而增大,且与材料屈服强度近似成线性关系;2.本文提出的钢制碟形封头屈曲压力计算新公式的适用范围为200≤Di/t≤2000,0.7≤Ri/Di≤1.0和0.06≤r/Di≤0.2,相比于现有公式具有更高精度和更强适用性。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A2300432
CLC number:
Download Full Text:
Downloaded:
908
Download summary:
<Click Here>Downloaded:
263Clicked:
1165
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2024-08-20