|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2024 Vol.25 No.9 P.732-748
Temperature field prediction of steel-concrete composite decks using TVFEMD-stacking ensemble algorithm
Abstract: This research aims to develop an advanced deep learning-based ensemble algorithm, utilizing environmental temperature and solar radiation as feature factors, to conduct hourly temperature field predictions for steel-concrete composite decks (SCCDs). The proposed model comprises feature parameter lag selection, two non-stationary time series decomposition methods (empirical mode decomposition (EMD) and time-varying filtering-based empirical mode decomposition (TVFEMD)), and a stacking ensemble prediction model. To validate the proposed model, five machine learning (ML) models (random forest (RF), support vector regression (SVR), multilayer perceptron (MLP), gradient boosting regression (GBR), and extreme gradient boosting (XGBoost)) were tested as base learners and evaluations were conducted within independent, mixed, and ensemble frameworks. Finally, predictions are made based on engineering cases. The results indicate that consideration of lag variables and modal decomposition can significantly improve the prediction performance of learners, and the stacking framework, which combines multiple learners, achieves superior prediction results. The proposed method demonstrates a high degree of predictive robustness and can be applied to statistical analysis of the temperature field in SCCDs. Incorporating time lag features helps account for the delayed heat dissipation phenomenon in concrete, while decomposition techniques assist in feature extraction.
Key words: Steel-concrete composite deck (SCCD); Temperature field; Time-varying filtering-based empirical mode decomposition (TVFEMD); Feature selection; Machine learning (ML)
机构:1长沙理工大学,土木工程学院,中国长沙,410114;2湖南文理学院,土木建筑工程学院,中国常德,415000;3中南林业科技大学,土木工程学院,中国长沙,410004
目的:钢-混组合桥面系在环境作用下的温度场精确预测对保证大跨度悬索桥使用安全具有重要意义。但现有基于健康监测及数值模拟的方法存在设备维护成本较高和计算效率低等缺陷,而基于单一机器学习模型的预测方法对参数敏感性较弱或泛化能力较差。本文期望通过时变经验模态分解对输入参数进行处理,并与Stacking集成算法结合建立一种新的预测模型,以提高钢-混组合桥面系温度场的预测效率及精度。
创新点:1.通过健康监测数据与数值模拟相结合的方法建立温度场数据库;2.使用时滞量分析及时变经验模态分解方法进行特征工程从而提提高预测精度;3.建立一种基于Stacking集成学习的温度场预测模型。
方法:1.以某大跨度悬索桥钢-混组合桥面系为工程背景,在健康监测数据验证数值分析模型的基础上,形成温度场数据库(图4);2.通过特征参数滞后分析及时变经验模态分解(TVFEMD)预先对输入特征进行处理,以针对性解决传热性差异及非平稳时间序列特征的问题(图7);3.选用随机森林(RF)、支持向量回归(SVR)、多层感知器(MLP)、梯度增强回归(GBR)及极限梯度增强回归(XGBoost)四种机器学习模型作为基学习器,Elastic Net模型作为元学习器,建立Stacking集成学习模型(图3);4.采用上述单一模型及集成模型对比分析输入参数滞后处理及参数特征分解对模型预测精度的影响,通过泰勒图、误差分析、预测结果统计分析多方面评价模型精度及泛化能力(图10~14)。
结论:1.考虑时滞量和时变经验模态分解对输入特征进行处理可以有效提高单个机器学习模型的预测精度,Stacking集成算法能使预测误差得到进一步降低;2.TVFEMD-Stacking预测结果的统计参数与目标值吻合较好,可为进一步的温度场概率分析和长寿命周期下的温度梯度效应研究提供参考。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A2300441
CLC number:
Download Full Text:
Downloaded:
848
Download summary:
<Click Here>Downloaded:
137Clicked:
1240
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2024-09-29