Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Permeability of structured porous media: numerical simulations and microfluidic models

Abstract: In this study, the permeability of structured porous media with the microfluidic model is experimentally and numerically determined, and compared with the classic Kozeny-Carman (KC) equation. The Reynolds number (Re) varies from 0.83 to 142.98. It is observed that the threshold of the Reynolds number is 1. When Re is below the threshold, the permeability is independent of the Reynolds number. When Re is over this threshold, the viscous force plays a dominant role and the permeability decreases with the Reynolds number increment. The permeability also rises with the diameter increment. With the same micropillar diameter, the microfluidic model with a triangular pillar arrangement yields 4.5%7.4% lower permeability than that with a square pillar arrangement. The tortuosity obtained by numerical simulation in the triangular-arrangement model is 5.1%7.9% higher than that in the square-arrangement model. Based on the arrangement of micropillars, a tortuosity model is proposed for quasi-two-dimensional microfluidic models. There is an inverse relationship between permeability and tortuosity. In addition, the permeability generated by numerical simulation is consistent with that obtained experimentally. However, the permeability estimated by the classic KC equation roughly agrees with experimental results when the porosity is between 0.50 and 0.60. A model proposed in this study is suitable for predicting the permeability of microfluidic models. Furthermore, anisotropy induced by the tilt angle (0°90°) of a model rectangular micropillar arrangement causes preferential flow and decreases the effective porosity. When the tilt angle increases from 0° to 90°, the tortuosity declines from 2.04 to 1.03, causing the permeability to rise from 1.0×10-11 to 4.3×10-11 m2.

Key words: Permeability; Microfluidic model; Porosity; Tortuosity; Anisotropy

Chinese Summary  <13> 结构化多孔介质的渗透性:数值模拟和微流控模型

作者:聂绍凯1,2,3,刘鹏飞1,2,3,陈可心1,2,3,王文远1,2,3,陈云敏1,2,3,巴特1,2,3
机构:1浙江大学,建筑工程学院,岩土工程研究所,中国杭州,310058;2浙江大学,建筑工程学院,超重力研究中心,中国杭州,310058;3浙江大学,软弱土与环境工程教育部重点实验室,中国杭州,310058
目的:精密流体在微流控结构中的流动规律还不明晰。本文旨在探究雷诺数、各向异性、迂曲度、孔隙度和微通道深度等对微流控模型渗透率的影响,进一步提出基于二维矩形或圆形微柱的迂曲度模型和渗透率预测模型,并将实验结果、数值模拟结果和渗透率预测模型进行比较,以补充流体流动规律。
创新点:1.通过分析实验数据与数值模拟结果,推导出适用于微流控模型渗透率的计算公式;2.通过考虑颗粒排列方式,推导出更符合实验数据的迂曲度公式。
方法:1.通过设计实验模型,探究微柱颗粒排列方式、微柱直径和孔隙率等因素对微流控模型渗透率的影响(图8、10和15);2.通过数值模拟,对实验模型进行仿真,进一步获取迂曲度值,并从微观层面解释不同模型渗透率差异的原因(图7、9和11);3.通过理论推导,考虑颗粒排列方式,提出迂曲度公式,并进一步提出适用于微流控模型的渗透率预测模型(图13和公式(23))。
结论:1.由旋转角表征的各向异性形成了优势流,降低了模型有效孔隙率,因此对模型渗透率影响较大;2.流态转变(达西流向福希海默流)的临界雷诺数为1;3.微流控芯片模型受孔隙率的影响最大,另外还受颗粒排列方式、微柱直径和形状等参数的影响。

关键词组:渗透率;微流控模型;孔隙率;迂曲度;各向异性


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A2300516

CLC number:

Download Full Text:

Click Here

Downloaded:

879

Download summary:

<Click Here> 

Downloaded:

177

Clicked:

1341

Cited:

0

On-line Access:

2025-01-02

Received:

2023-10-11

Revision Accepted:

2024-02-22

Crosschecked:

2025-01-02

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE