|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2024 Vol.25 No.8 P.605-617
Frequency-domain analysis of fluid-structure interaction in aircraft hydraulic pipeline systems: numerical and experimental studies
Abstract: The fluid-structure interaction (FSI) in aircraft hydraulic pipeline systems is of great concern because of the damage it causes. To accurately predict the vibration characteristic of long hydraulic pipelines with curved segments, we studied the frequency-domain modeling and solution method for FSI in these pipeline systems. Fourteen partial differential equations (PDEs) are utilized to model the pipeline FSI, considering both frequency-dependent friction and bending-flexibility modification. To address the numerical instability encountered by the traditional transfer matrix method (TMM) in solving relatively complex pipelines, an improved TMM is proposed for solving the PDEs in the frequency domain, based on the matrix-stacking strategy and matrix representation of boundary conditions. The proposed FSI model and improved solution method are validated by numerical cases and experiments. An experimental rig of a practical hydraulic system, consisting of an aircraft engine-driven pump, a Z-shaped aero-hydraulic pipeline, and a throttle valve, was constructed for testing. The magnitude ratio of acceleration to pressure is introduced to evaluate the theoretical and experimental results, which indicate that the proposed model and solution method are effective in practical applications. The methodology presented in this paper can be used as an efficient approach for the vibrational design of aircraft hydraulic pipeline systems.
Key words: Fluid-structure interaction (FSI); Frequency-domain analysis; Aircraft hydraulic pipeline; Pipeline vibration; Transfer matrix method (TMM)
机构:1北京航空航天大学,自动化科学与电气工程学院,中国北京,100191;2北京航空航天大学,前沿科学技术创新研究院,中国北京,100191;3北京航空航天大学,先进航空机载系统工信部重点实验室,中国北京,100191;4北京航空航天大学宁波创新研究院,浙江宁波,315800;5天目山实验室,浙江杭州,310023
目的:为了实现对液压管路系统流固耦合振动特性的准确预测,本文研究了基于改进型传递矩阵法(TMM)的流固耦合频域分析方法,并针对复杂充液管路系统的频率响应特性进行计算,以期为机载管路的振动设计提供支撑。
创新点:1.建立了完整的管路流固耦合模型,并考虑了全管段的摩擦耦合以及弯管的刚度修正;2.综合传矩阵堆叠策略和边界条件的矩阵表达,提出了一种改进型TMM,解决了传统TMM计算不稳定的问题;3.搭建了机载管路实验台,并采用航空液压泵和负载节流阀对机载Z型管路进行了流固耦合实验,验证了所提模型与方法的有效性和准确性。
方法:1.对于管路14方程流固耦合模型,考虑流体粘性摩擦,并在弯管弯曲段考虑其刚度修正因子;2.通过数值仿真对比TMM计算结果与有限元法计算结果,并基于传递矩阵堆叠技术的改进型TMM方法来解决L型弯管案例中出现的计算失稳问题;3.在实际液压系统中开展管道流固耦合实验,并以管道加速度与管道入口压力的比值阻抗为指标,验证改进型TMM方法的准确性。
结论:1.针对飞机液压管路系统长距离、多弯曲段的特点,建立了同时考虑流体摩擦和弯曲段刚度修正的管路流固耦合模型,并通过数值案例验证了模型的正确性;2.为解决计算不稳定性问题,提出了一种基于传递矩阵堆叠技术的改进型TMM,并通过数值仿真案例验证了它的有效性;3.搭建了由飞机发动机驱动泵、Z型液压管路和负载节流阀组成的实验台,研究了实际液压系统的流固耦合实验方法和边界条件设置,并验证了实验、有限元方法和改进型TMM的一致性,进而证明了所提流固耦合模型和改进型TMM方法的有效性。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A2300517
CLC number:
Download Full Text:
Downloaded:
762
Clicked:
1196
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2024-08-20