|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2025 Vol.26 No.3 P.266-276
Parametric design for the valve seat of a high-temperature and high-pressure valve inside wind tunnels
Abstract: A high-temperature and high-pressure valve is the key equipment of a wind tunnel system; it controls the generation of high-temperature and high-pressure gas. To reduce the adverse impact of high-temperature and high-pressure gas on the strength of the valve body, a cooling structure is set on the valve seat. This can significantly reduce the temperature of the valve body and valve seat. The effects of its structure on the cooling characteristics and stress of the valve seat are studied, and six main parameters that can completely describe the geometry of the cooling structure are proposed. The central composite design method is used to select sample points, and the multi-objective genetic algorithm (MOGA) method is used for optimal structural design. A modification method according to the main parameters for the valve seat is proposed. The results show that the cooling structure weakens the pressure-bearing capability of the valve seat. Among the six main parameters of the valve seat, the distance from the end face of the lower hole to the Z-axis and the distance from the axis of the lower hole to the origin of the coordinates have the most obvious effects on the average stress of the valve seat. An optimum design value is proposed. This work can provide a reference for the design of high-temperature and high-pressure valves.
Key words: Control valve; Valve seat; Optimization; Parametric design
机构:1中国空气动力研究与发展中心,超高速所,中国绵阳,621000;2上海科科阀门集团有限公司,中国上海,201802;3浙江大学,特种装备研究所,中国杭州,310027;4浙江大学,流体动力基础件与机电系统全国重点实验室,中国杭州,310058
目的:风洞系统中高温高压介质会对热阀承压能力产生显著影响。本文提出基于多目标遗传算法(MOGA)模型的阀门阀座参数化设计方法,探讨冷却结构参数对阀座承压能力和冷却能力的影响规律,建立适应性结构优化方法,为高温高压阀门设计提供参考。
创新点:1.设计具有优良隔热能力的阀座冷却结构;2.基于MOGA模型提出阀座冷却结构参数化设计方法。
方法:1.通过理论分析,设计具有良好隔热能力的阀座冷却结构,验证其冷却能力。2.通过参数化建模,建立阀座冷却结构的几何模型,关联冷却结构特征参数和几何模型特征。3.通过仿真模拟进行参数敏感性分析(图8),提出基于MOGA模型的阀座冷却结构优化设计方法,建立优化的阀座冷却结构设计方案。
结论:1.提出的冷却结构设计方法可完整地描述阀座几何结构的特征;2.阀座冷却结构竖孔的设计深度和位置对于阀座的应力状态和平均温度具有显著影响;3.优化后的阀座结构平均温度可从242.47 °C降低到70.61 °C,阀座的平均应力可从115.22 MPa降低到100.02 MPa。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A2300546
CLC number:
Download Full Text:
Downloaded:
794
Download summary:
<Click Here>Downloaded:
9Clicked:
1302
Cited:
0
On-line Access:
2025-03-31
Received:
2023-10-28
Revision Accepted:
2024-03-18
Crosschecked:
2025-03-31