Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Predicting tunnel boring machine performance with the Informer model: a case study of the Guangzhou Metro Line project

Abstract: Accurately forecasting the operational performance of a tunnel boring machine (TBM) in advance is useful for making timely adjustments to boring parameters, thereby enhancing overall boring efficiency. In this study, we used the Informer model to predict a critical performance parameter of the TBM, namely thrust. Leveraging data from the Guangzhou Metro Line 22 project on the big data platform in China, the model’s performance was validated, while data from Line 18 were used to assess its generalization capability. Results revealed that the Informer model surpasses random forest (RF), extreme gradient boosting (XGB), support vector regression (SVR), k-nearest neighbors (KNN), back propagation (BP), and long short-term memory (LSTM) models in both prediction accuracy and generalization performance. In addition, the optimal input lengths for maximizing accuracy in the single-time-step output model are within the range of 8–24, while for the multiple-time-step output model, the optimal input length is 8. Furthermore, the last predicted value in the case of multiple-time-step outputs showed the highest accuracy. It was also found that relaxation of the Pearson analysis method metrics to 0.95 improved the performance of the model. Finally, the prediction results were most affected by earth pressure, rotation speed, torque, boring speed, and the surrounding rock grade. The model can provide useful guidance for constructors when adjusting TBM operation parameters.

Key words: Boring machine performance; Informer model; Deep learning; Thrust force

Chinese Summary  <1> 利用Informer模型预测隧道掘进机性能:广州地铁项目案例研究

作者:赵君行1,丁小彬1,2
机构:1华南理工大学,土木与交通学院,中国广州,510641;2华南理工大学,广东省现代土木工程技术重点实验室,中国广州,511442
目的:提前准确预测隧道掘进机(TBM)的运行性能有助于及时调整掘进参数,从而提高整体掘进效率。本文旨在探讨不同模型和时间长度对TBM性能预测效果的影响,并考虑土压、转速、扭矩、掘进速度、推力、岩石单轴抗压强度、围岩等级和液限等因素,研究得出预测性能最好的模型,以提高TBM性能的预测精度。
创新点:1.提出了预测TBM性能的Informer模型框架;2.每个模型仅使用7个参数预测TBM性能;3.确定了Informer模型的最佳参数组合;4.研究发现Informer模型在性能和概括能力方面优于其他比较模型。
方法:1.数据收集与分析,确定模型输入参数;2.通过不同模型预测TBM性能,并比较预测性能;3.通过不同模型对新数据进行预测,得到模型的泛化能力;4.比较不同输入长度与不同参数组合对TBM性能预测的影响。
结论:1.随机森林、极端梯度提升树、支持向量机、K近邻、反向传播神经网络和长短时记忆模型被用作对比模型;这些模型在原始项目的测试集上表现良好,但在新项目上表现不佳,且缺乏一定的泛化能力。2.单时间步和多时间步输出对模型的影响截然不同;在确定输入参数的合适时间间隔时应审慎考虑;在本次调查中,8至24分钟的输入长度被证明适用于单时间步骤输出,而8分钟的输入长度被认为适用于多时间步骤输出;模型相关系数分别可达0.99和0.98。3.计算了模型预测值的相关系数,包括平均预测值、首次预测值和最后一次预测值,且最后一次预测值与真实值的相关性更强。4.鉴于模型中输入参数的数量有限,皮尔逊分析方法的排除阈值从0.80调整为0.95;这一调整使得新模型在新数据上的表现优于之前的模型。5.敏感性分析表明,影响预测结果的输入参数从大到小依次为刀盘转速、土压力、围岩等级和扭矩,且这些参数的相关系数超过0.95;相反,岩石单轴抗压强度和液限对预测结果的影响相对较小(相关系数约为0.77)。

关键词组:TBM性能;Informer模型;深度学习;推力


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A2400012

CLC number:

Download Full Text:

Click Here

Downloaded:

616

Clicked:

1449

Cited:

0

On-line Access:

2025-03-31

Received:

2024-01-05

Revision Accepted:

2024-04-19

Crosschecked:

2025-03-31

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE