Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Impact of disc-cutter partial wear on tunneling parameters and a high-accuracy method for discrimination of partial wear

Abstract: In tunnel construction with tunnel boring machines (TBMs), accurate knowledge of disc-cutter failure states is crucial to ensure efficient operation and prevent delays and cost overruns. This study investigates the influence of disc-cutter partial wear on tunneling parameters and proposes a novel method for discriminating partial-wear ratio based on a stacking ensemble model. The time-domain features of torque and thrust, including the average value and standard deviation, are analyzed through a series of scaled-down experimental tests on partial wear. Torque and thrust values will increase when a disc cutter is trapped and partially worn. The impact of partial-wear ratio on tunneling parameters appears to be more significant than partial-wear depth. A total of 40 features are selected from the time domain, frequency domain, and time-frequency domain to describe the torque and thrust. The relationships between these features and the partial-wear ratio are analyzed using the Pearson coefficient and Copula entropy. The results reveal that, except for the form factor in the time-domain features, the remaining features exhibit certain linear or non-linear correlations with the partial-wear ratio. Lastly, the proposed model successfully achieves the discrimination of the partial-wear ratio and outperforms other commonly used models in terms of overall classification accuracy and differentiation capability in different categories. This research provides effective support for monitoring and health management of disc-cutter failure states.

Key words: Tunnel boring machine (TBM); Disc cutter; Partial wear; Tunneling parameters; Multi-domain features; Ensemble learning

Chinese Summary  <20> 圆盘滚刀偏磨对隧道掘进参数的影响及其高精度判别

作者:周星海1,2,张亚坤1,龚国芳1,杨华勇1
机构:1浙江大学,流体动力基础件与机电系统全国重点实验室,中国杭州,310058;2中国电建集团华东勘测设计研究院,中国杭州,311122
目的:隧道掘进机滚刀失效引起的损耗是影响工程施工速度和造价的关键因素,且滚刀偏磨在异常损坏中最为常见。本文旨在探讨滚刀偏磨故障对掘进参数(刀盘扭矩和推力)的影响,并研究偏磨故障率的判别方法,以实现滚刀故障的准确识别。
创新点:1.搭建滚刀故障模拟试验台进行滚刀偏磨故障试验,获取不同偏磨故障率下的掘进参数数据;2.通过时域、频域及时频域故障特征提取,建立基于Stacking集成模型的偏磨故障率判别模型,成功实现滚刀偏磨故障率的高精度判别。
方法:1.通过缩尺偏磨试验,收集不同偏磨状态下刀盘扭矩和推力数据,并对其时域特征进行分析(图8~10);2.运用时域、频域及时频域分析方法,对偏磨特征进行精细提取,并采用Person相关系数及Copula熵(CE)进行特征分析(图12和13),最终形成判别模型的数据集;3.基于Stacking集成模型算法,建立偏磨故障率判别模型,并与k近邻算法(KNN)、随机森林(RF)、支持向量分类器(SVC)和多层感知机(MLP)等经典模型进行全面对比,验证所提模型的有效性和准确性(图19和20)。
结论:1.当盾构滚刀受困并出现偏磨时,掘进参数中的推力和扭矩会随之显著增加,这是因为滚刀与岩石的相互运动方式从滑动变为滚动,同时接触区域的形状也发生了变化;2.相比于偏磨深度,偏磨故障率对掘进参数的影响更为显著;3.推力和扭矩的多域特征与偏磨故障率之间存在相关性,且Pearson相关系数的大小表明了均方根(RMS)、形心频率(CF)和子带能量等28个特征与偏磨故障率之间的线性相关性,而CE则确认了偏度和峰度等12个特征与偏磨故障率之间的非线性相关性;4.所提出的局部磨损率判别模型(PRDM)能够准确判别偏磨故障率,且与KNN、RF、SVC和MLP等模型相比,PRDM在准确性和宏观F1评估指标方面表现最佳。

关键词组:隧道掘进机;滚刀;偏磨;掘进参数;多域特征;集成学习


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A2400068

CLC number:

Download Full Text:

Click Here

Downloaded:

1409

Download summary:

<Click Here> 

Downloaded:

200

Clicked:

1403

Cited:

0

On-line Access:

2025-04-30

Received:

2024-02-01

Revision Accepted:

2024-05-21

Crosschecked:

2025-04-30

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE