|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2025 Vol.26 No.8 P.723-737
An energy-saving design method for additively manufactured integrated valve-controlled cylinders
Abstract: The integrated valve-controlled cylinder combines various control and execution components in hydraulic transmission systems. Its precise control and rapid response characteristics make it widely used in mobile equipment for aerospace, robotics, and other engineering applications. Additive manufacturing provides high design freedom which can further enhance the power density of integrated valve-controlled cylinders. However, there is a lack of effective design methods to guide the additive manufacturing of valve-controlled cylinders for more efficient hydraulic energy transmission. This study accordingly introduces an energy-saving design method based on additive manufacturing for integrated valve-controlled cylinders. The method consists of two main parts: (1) redesigning the manifold block to eliminate leakage points and reduce energy losses through integrated design of the valve, cylinder, and piping; (2) establishing a pressure loss model to achieve energy savings through optimized flow channel design for bends with different parameters. Compared to traditional valve-controlled cylinders, the integrated valve-controlled cylinder developed from our method reduces the weight by 31%, volume by 55%, and pressure loss in the main flow channel by over 30%. This indicates that the design achieves both lightweight construction and improved hydraulic transmission efficiency. This study provides theoretical guidance for the design of lightweight and energy-efficient valve-controlled cylinders, and may aid the design of similar hydraulic machinery.
Key words: Valve-controlled cylinder; Additive manufacturing; Flow channel design; Energy-saving machinery; Integration
机构:1浙江大学,流体动力基础件与机电系统全国重点实验室,中国杭州,310058;2瑞典皇家理工学院能源技术系,瑞典斯德哥尔摩,10044;3中国铁建重工集团股份有限公司,中国长沙,410023;4浙江大学宁波国际科创中心,中国宁波,315100
目的:目前对增材制造成形的阀控缸设计方法研究都停留在根据既有经验设计元件结构的层面,均未从科学层面提出增材设计准则及流程。本文旨在提出一种基于增材制造的一体化阀控缸轻量节能设计方法,通过对某传统加工成形的阀控缸进行基于增材制造的再设计、再制造,并对成形的一体化阀控缸进行性能验证,以实现轻量节能。
创新点:1.提出了管缸贴壁一体化设计准则,提出了增材制造成形方式下贴壁设计的最小设计间距;2.提出了一种低压损流道路径规划方法,并基于模拟退火算法和粒子群算法实现低压损流道路径规划。
方法:1.通过仿真和理论分析,推导出管缸贴壁一体化设计过程中管壁应力变化情况,比较不同直径比下流道承受的应力(图4),进而提出增材制造成形方式下贴壁设计的最小设计间距(公式(9));2.通过仿真分析和插值计算,得出不同弯曲比、弯曲半径、流速下的流道压损模型(图6),基于此模型通过模拟退火算法和粒子群算法实现低压损流道路径规划(图11~13),并搭建试验台进行压损测试,验证所提方法的可行性和有效性(图17和18)。
结论:1.基于增材制造技术复现了原型液压原理,对阀控缸元件进行了重新设计,并去除了液压阀块以及连接接头;2.提出了管缸贴壁一体化设计准则,在避免应力集中的情况下缩短流道和缸筒距离,减少打印支撑;3.建立了不同工作流量、弯曲角度和弯曲比下拐弯流道的压损数据库,并基于此提出了以压损和拐弯数量为导向的阀控缸流道设计流程;4.相对于阀控缸原型,一体化阀控缸的重量减轻了31%,空间体积减小了55%,同时主功能流道的压力损失降低了30%以上;5.本研究提出了一套节能型阀控缸一体化设计流程,同时该设计方法适用于具有类似结构和类似连接方式的阀控缸、液压阀块等元件的增材制造设计。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A2400396
CLC number:
Download Full Text:
Downloaded:
1679
Download summary:
<Click Here>Downloaded:
205Clicked:
1125
Cited:
0
On-line Access:
2025-08-27
Received:
2024-08-19
Revision Accepted:
2024-12-03
Crosschecked:
2025-08-28