Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Electrostatic potential distribution image-transfer learning method for highly accurate prediction of lithium diffusion barriers on transition metal dichalcogenide surfaces

Abstract: Calculating the inter-layer ion diffusion barrier, a crucial metric for evaluating the rate performance of 2D electrode materials, is time-consuming using the transition state search approach. A novel electrostatic potential distribution image (EPDI) transfer learning method has been proposed to efficiently and accurately predict the lithium diffusion barriers on metal element-doped transition metal dichalcogenide (TMD) surfaces. Through the analysis of the mean electrostatic potential (MEP) around binding sites, a positive correlation between binding energy and MEP in VIB-TMDs was identified. Subsequently, transfer learning techniques were used to develop a DenseNet121-TL model for establishing a more accurate mapping between the binding energy and electrostatic potential distribution. Trained on training sets containing 33% and 50% transition state search calculation results, which save 66% and 50% of the calculation time, respectively, the model achieves accurate predictions of the saddle point binding energy with mean absolute errors (MAEs) of 0.0444 and 0.0287 eV on the testing set. Based on the prediction of saddle point binding energies, we obtained a diffusion minimum energy profile with an MAE of 0.0235 eV. Furthermore, by analyzing the diffusion data, we observed that the diffusion barrier was lowered by 10% on V-doped TiS2 compared to the stoichiometric surface. Our findings are expected to provide new insights for the high-throughput calculation of ion diffusion on 2D materials.

Key words: Transition metal dichalcogenide (TMD); Deep learning; Transfer learning; Electrostatic potential; Lithium-diffusion

Chinese Summary  <6> 基于静电势分布图像迁移学习的过渡金属硫族化物表面锂扩散势垒高精度预测方法

作者:陈健1,2,康瑶1,2,王旭东1,2,黄昊1,姚曼1,2
机构:1大连理工大学,材料科学与工程学院,中国大连,116024;2大连理工大学,辽宁省凝固控制与数字化制备技术重点实验室,中国大连,116024
目的:表面锂扩散势垒是评价二维电极材料倍率性能的关键参数之一。基于过渡态搜索的扩散势垒计算方法是一种广泛使用但计算耗时的方法。本文以金属元素掺杂的二维过渡金属硫化物为研究对象,旨在借助卷积神经网络和迁移学习技术构建局部表面静电势分布图像与锂结合能的映射关系,以此实现表面锂扩散势能曲线的高效准确预测。
创新点:基于卷积神经网络的可迁移性,借助用于图像识别的深度学习模型,构建了局部表面静电势分布图像与锂结合能的映射关系,并以此实现了锂扩散路径上势能曲线的高效预测。
方法:1.通过基于密度泛函理论的第一性原理计算,揭示金属元素掺杂VIB族过渡金属硫化物表面的局部静电势均值与锂结合能的强正相关性;2.针对金属元素掺杂IVB、VB和VIB族过渡金属硫化物构建局部静电势图像及锂结合能数据库,借助迁移学习方法搭建多种深度学习模型,调参优化训练模型,并对比训练后不同模型预测效果的差异性;3.选取最优模型,调节训练集中过渡态计算数据的数量,预测不同锂扩散路径上的势能曲线,并对比过渡态搜索方法,验证EPDI-迁移学习方法的高预测精度和低耗时性。
结论:1.金属元素掺杂VIB族过渡金属硫化物表面的局部静电势均值与锂结合能呈现强正相关性。2.借助迁移学习技术的DenseNet121-TL模型能够实现鞍点结合能的准确预测;当训练集包含33%的鞍点结合能数据时,对其余鞍点结合能的平均绝对预测误差为0.0444 eV。3.利用对鞍点结合能的预测实现了锂扩散路径上势能曲线的高效预测。

关键词组:过渡金属硫族化物;深度学习;迁移学习;静电势;锂扩散


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A2400503

CLC number:

Download Full Text:

Click Here

Downloaded:

1889

Clicked:

1630

Cited:

0

On-line Access:

2025-10-25

Received:

2024-10-24

Revision Accepted:

2025-01-16

Crosschecked:

2025-10-27

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE