|
|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2025 Vol.26 No.11 P.1034-1051
Machine learning for soil parameter inversion enhanced with Bayesian optimization
Abstract: Machine learning (ML) has strong potential for soil settlement prediction, but determining hyperparameters for ML models is often intricate and laborious. Therefore, we apply Bayesian optimization to determine the optimal hyperparameter combinations, enhancing the effectiveness of ML models for soil parameter inversion. The ML models are trained using numerical simulation data generated with the modified Cam-Clay (MCC) model in ABAQUS software, and their performance is evaluated using ground settlement monitoring data from an airport runway. Five optimized ML models—decision tree (DT), random forest (RF), support vector regression (SVR), deep neural network (DNN), and one-dimensional convolutional neural network (1D-CNN)—are compared in terms of their accuracy for soil parameter inversion and settlement prediction. The results indicate that Bayesian optimization efficiently utilizes prior knowledge to identify the optimal hyperparameters, significantly improving model performance. Among the evaluated models, the 1D-CNN achieves the highest accuracy in soil parameter inversion, generating settlement predictions that closely match real monitoring data. These findings demonstrate the effectiveness of the proposed approach for soil parameter inversion and settlement prediction, and reveal how Bayesian optimization can refine the model selection process.
Key words: ABAQUS software; Bayesian optimization; Machine learning (ML) algorithms; Parameter inversion; Settlement prediction
机构:1浙江大学,滨海和城市岩土工程研究中心,中国杭州,310058;2浙江大学,软弱土与环境土工教育部重点实验室,中国杭州,310058;3浙江科技大学,土木与建筑工程学院,中国杭州,310023
目的:土体参数标定困难是数值模拟方法在软土地基沉降预测中遇到的难题。本研究构建5种机器学习模型,通过贝叶斯优化快速获取模型最优超参数配置,比选最优超参数配置下各模型在测试集和实际监测数据集上的泛化性能,旨在获取高精度、优性能的土体参数反演模型。
创新点:1.结合数值模拟生成的高保真数据和厦门翔安机场的实测数据构建数据集,兼顾数据规模和真实性;2.通过贝叶斯优化,在有限试验次数内快速获取各模型的最优超参数配置;3.建立5种基于沉降数据集的机器学习模型,并通过多组试验比选获取最优超参数配置下用于土体参数反演的最优机器学习模型。
方法:1.采用修正剑桥模型,通过调整有限元建模(FEM)脚本中土体参数的变化范围在ABAQUS软件中生成足量的用于训练机器学习模型的高保真数据集;2.建立5种基于沉降数据集的土体参数反演机器学习模型,并通过贝叶斯优化获取各模型的最优超参数配置,比较最优超参数配置下各模型在测试集下的预测精度;3.为进一步验证所构建的机器学习模型在实测数据集上的泛化性能,以厦门翔安机场的实际沉降监测数据为基础,利用优化后的各机器学习模型反演沉降预测中所需的关键土体参数;4.将反演得到的土体参数输入数值计算模型,对比沉降计算曲线和实际监测曲线的误差,比选获得最优土体参数反演机器学习模型。
结论:1.贝叶斯优化是高效的全局优化算法,可快速获取机器学习模型的最优超参数配置;2.机器学习模型架构的复杂度会直接影响其土体参数的反演精度,且集成多个决策树的随机森林模型的预测精度较单一决策树模型有极大提升;3.一维卷积神经网络模型的预测精度最好,可以可靠、准确地反演土体参数,为沉降的精准预测提供了有力支持。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A2400568
CLC number:
Download Full Text:
Downloaded:
951
Clicked:
944
Cited:
0
On-line Access:
2025-11-24
Received:
2024-12-10
Revision Accepted:
2025-03-26
Crosschecked:
2025-11-25