|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2025 Vol.26 No.8 P.755-770
Continuous energy exchange between magnetic fields supporting memristive neuron firing
Abstract: Biological neurons can be excited to maintain certain firing patterns following different external stimuli, and similar changes in electrical activities can be reproduced in some neural circuits by applying an external voltage. Generic neural circuits are composed of capacitors, induction coils, resistors, and nonlinear resistors, and continuous energy exchange between the capacitive and inductive components is crucial for preserving output voltages. Incorporating nonlinear elements causes interactions between the charge flow across the capacitor and the induced electromotive force on the inductor. It is a challenge to explore the occurrence of nonlinear oscillation and coherence resonance in a neural circuit without using a capacitor and nonlinear resistor, and it considers the case lack of electric field energy. In this paper, a simple neural circuit is proposed that combines two inductors, one magnetic flux-controlled memristor (MFCM), and three resistors, with two constant voltage sources in the branch circuits used as reverse potentials in the ion channels. The field energy has an exact form, and it is stored in the circuit components as a magnetic field. Scale transformation is applied on the circuit equations and field energy function to obtain equivalent dimensionless forms of the memristive neuron and Hamilton energy. The reference values for the physical time and capacitance are represented by an appropriate combination of resistance and inductance, because the capacitance value is unavailable. The memristive neuron without capacitive effect still shows similar firing patterns, and coherence resonance is induced under noisy excitation. The emergence of coherence resonance can be predicted by calculating the distribution of the average energy <H> versus noise intensity, and the value for <H> reaches a maximum under coherence resonance. Finally, an adaptive law for parameter growth under energy control is proposed to control mode transitions in the electrical activity. The methodology and results of this work offer insights into the oscillatory mechanism of neural circuits, and showcase how magnetic field control can be used to manage neural activations.
Key words: Neural circuit; Hamilton energy; Memristor; Stochastic resonance; Adaptive parameter growth
机构:1兰州理工大学,自动化与电器工程学院,中国兰州,730050;2兰州理工大学,理学院,中国兰州,730050
目的:神经元电路的振荡源于其内部电场和磁场能量的持续交换。当电容器损坏或者缺失时,对神经元电路进行改造并产生连续的神经电信号非常关键。神经元电路通常包含电容器、电感线圈、电阻和非线性器件,且这些非线性电路的动力学分析必须在无量纲模型中进行。在对电路方程进行标度变化时需要引入时间标度和电压标度(时间标度一般包含电容参量),而当电容器缺失时,时间标度则无法直接定义。因此,定义新的时间标度就具有重要的科学意义。
创新点:1.在电容参量缺失时以电感参数和电阻参数的组合定义了新的时间基准和能量基准(标度变换的基准值)。2.神经元电路能量以磁场方式存储于磁控忆阻器和感应线圈支路,且持续的能量交换保障了神经元电路持续振荡。3.定义了场能量函数和对应的哈密顿能量函数,解释了放电模态对能量的依赖性,并进一步提出基于能量控制的自适应律来控制参数增长。
方法:1.采用单个磁控忆阻器并联两个电感线圈,并在线圈支路引入恒定电压源表示离子通道反转电位。2.计算神经元各个支路场能量,利用标度变换把神经元电路场能量函数转化为无量纲的形式,并进一步利用赫姆霍兹定理证明该能量函数。3.通过计算该忆阻神经元模型的变量序列进行分岔分析,进一步施加通道噪声诱发随机共振并利用哈密顿能量函数平均值来预测随机共振。4.基于能量流对神经元参数进行自适应调控,以实现对放电模态的控制。
结论:1.神经元电路的持续振荡源于各个支路器件持续的能量交换。2.电容器缺失时,基于磁控的元件如电感线圈和磁控忆阻器,在支路恒定电压源驱动下神经元电路依然能产生持续电信号。3.能量值决定着神经元的放电模态,且能量操控可以改变神经元的放电特征。4.没有时变电场的神经元电路和无电容性变量的忆阻神经元同样能有效展示神经元电活动的动力学特征。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A2500150
CLC number:
Download Full Text:
Downloaded:
876
Download summary:
<Click Here>Downloaded:
188Clicked:
570
Cited:
0
On-line Access:
2025-08-27
Received:
2025-04-25
Revision Accepted:
2025-06-02
Crosschecked:
2025-08-28