Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE B

ISSN 1673-1581(Print), 1862-1783(Online), Monthly

Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination

Abstract: The bglS gene encoding endo-l,3-1,4-β-glucanase from Bacillus subtilis was cloned and sequenced in this study. The bglS expression cassette, including PGK1 promoter, bglS gene fused to the signal sequence of the yeast mating pheromone α-factor (MFα1S), and ADH1 terminator with G418-resistance as the selected marker, was constructed. Then one of the PEP4 allele of Saccharomyces cerevisiae WZ65 strain was replaced by bglS expression cassette using chromosomal integration of polymerase chain reaction (PCR)-mediated homologous recombination, and the bglS gene was expressed simultaneously. The recombinant strain S. cerevisiae (SC-βG) was preliminarily screened by the clearing hydrolysis zone formed after the barley β-glucan was hydrolyzed in the plate and no proteinase A (PrA) activity was measured in fermenting liquor. The results of PCR analysis of genome DNA showed that one of the PEP4 allele had been replaced and bglS gene had been inserted into the locus of PEP4 gene in recombinant strains. Different endo-l,3-1,4-β-glucanase assay methods showed that the recombinant strain SC-βG had high endo-l,3-1,4-β-glucanase expression level with the maximum of 69.3 U/(h·ml) after 60 h of incubation. Meanwhile, the Congo Red method was suitable for the determination of endo-l,3-1,4-β-glucanase activity during the actual brewing process. The current research implies that the constructed yeast strain could be utilized to improve the industrial brewing property of beer.

Key words: Endo-l,3-1,4-β-glucanase (bglS), Gene replacement, Homologous recombination, Bacillus subtilis, PEP4 gene, Saccharomyces cerevisiae


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.B0820019

CLC number:

Q814

Download Full Text:

Click Here

Downloaded:

3557

Clicked:

6179

Cited:

9

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE