Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE B

ISSN 1673-1581(Print), 1862-1783(Online), Monthly

Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity

Abstract: Transgenic Brassica compestris L. spp. chinensis plants expressing a choline oxidase (codA) gene from Arthrobacter globiformis were obtained through Agrobacterium tumefaciens-mediated transformation. In the transgenic plants, codA gene expression and its product transportation to chloroplasts were detected by the enzyme-linked immunosorbent assay (ELISA) examination, immunogold localization, and 1H-nuclear magnetic resonance (1H-NMR). Stress tolerance was evaluated in the T3 plants under extreme temperature and salinity conditions. The plants of transgenic line 1 (L1) showed significantly higher net photosynthetic rate (Pn) and Pn recovery rate under high (45 °C, 4 h) and low temperature (1 °C, 48 h) treatments, and higher photosynthetic rate under high salinity conditions (100, 200, and 300 mmol/L NaCl, respectively) than the wild-type plants. The enhanced tolerance to high temperature and high salinity stresses in transgenic plants is associated with the accumulation of betaine, which is not found in the wild-type plants. Our results indicate that the introduction of codA gene from Arthrobacter globiformis into Brassica compestris L. spp. chinensis could be a potential strategy for improving the plant tolerance to multiple stresses.

Key words: Brassica compestris L. spp. chinensis, codA, Stress, Glycine betaine, Net photosynthetic rate (Pn)


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.B1000137

CLC number:

Q943.2

Download Full Text:

Click Here

Downloaded:

2807

Clicked:

6214

Cited:

6

On-line Access:

2010-11-04

Received:

2010-04-15

Revision Accepted:

2010-05-18

Crosschecked:

2010-09-28

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE