Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE B

ISSN 1673-1581(Print), 1862-1783(Online), Monthly

Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor

Abstract: This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for Parkinson’s disease treatment.

Key words: Zirconium oxide, Ceramic foam, Glial cell line-derived neurotrophic factor (GDNF), Parkinson’s disease

Chinese Summary  <49> 氧化锆陶瓷泡沫:一种有望大规模生产GDNF的生物支持材料

研究目的:探讨氧化锆陶瓷泡沫细胞培养体系在胶质细胞源性神经营养因子(GDNF)生产方面的潜在用途。
创新要点:运用氧化锆陶瓷泡沫构建神经胶质细胞3D培养体系并测定该体系,该体系GDNF的产量明显优于传统的细胞培养体系。
研究方法:将原代神经胶质细胞种植于氧化锆陶瓷泡沫3D培养体系中,采用四唑盐(MTT)比色法对其生物相容性进行观察;采用扫描电子显微镜观察该体系神经胶质细胞形态;检测DNA含量以评估细胞增殖情况;采用酶联免疫吸附测定法(ELISA)检测该体系GDNF的产量;采用实时定量聚合酶链式反应(PCR)及免疫印迹试验(Western blotting)对胶质细胞中产生GDNF的信号通路激活情况进行观察。
重要结论:氧化锆陶瓷泡沫生物相容性好,由其构建的3D培养体系的GDNF产量明显优于传统2D培养体系。

关键词组:氧化锆;陶瓷泡沫;帕金森病


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.B1400163

CLC number:

Q819

Download Full Text:

Click Here

Downloaded:

3247

Download summary:

<Click Here> 

Downloaded:

2222

Clicked:

5550

Cited:

2

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2014-11-17

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE