|
Journal of Zhejiang University SCIENCE B
ISSN 1673-1581(Print), 1862-1783(Online), Monthly
2016 Vol.17 No.5 P.352-360
Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer
Abstract: Background: Tumor-derived exosomes were considered to be potential candidates for tumor vaccines because they are abundant in immune-regulating proteins, whereas tumor exosomal miRNAs may induce immune tolerance, thereby having an opposite immune function. Objective: This study was designed to separate exosomal protein and depleted exosomal microRNAs (miRNAs), increasing the immune activity of exosomes for activating dendritic cell/cytokine-induced killer cells (DC/CIKs) against pancreatic cancer (PC). Methods: PC-derived exosomes (PEs) were extracted from cultured PANC-1 cell supernatants and then ruptured; this was followed by ultrafiltered exosome lysates (UELs). DCs were stimulated with lipopolysaccharide (LPS), PE, and UEL, followed by co-culture with CIKs. The anti-tumor effects of DC/CIKs against PC were evaluated by proliferation and killing rates, tumor necrosis factor-α (TNF-α) and perforin secretion. Exosomal miRNAs were depleted after lysis and ultrafiltration, while 128 proteins were retained, including several immune-activating proteins. Results: UEL-stimulated DC/CIKs showed a higher killing rate than LPS- and PE-stimulated DC/CIKs. Conclusions: miRNA-depleted exosome proteins may be promising agonists for specifically activating DC/CIKs against PC.
Key words: Pancreatic cancer, Exosome, Dendritic cell, MicroRNAs
创新点:无miRNA的exosome超速离心裂解产物可以通过激活DC/CIKs细胞增强其对肿瘤细胞的杀伤作用。
方法:通过收集PANC-1细胞的上清并超速离心提取其中的exosome。提取的DC细胞分别通过脂多糖、肿瘤来源exosome及无miRNA的exosome刺激后,与CIK细胞共培养。通过计算增值与杀伤效率,肿瘤坏死因子-α(TNF-α)及穿孔素的分泌,比较各组间CIK细胞对胰腺癌细胞的杀伤作用。
结论:经无miRNA的exosome刺激后的CIK细胞比其他两组表现出更高的杀伤效应。实验结果表明无miRNA的exosome蛋白在DC/CIKs细胞的胰腺癌治疗中是有相当前景的激动剂。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.B1500305
CLC number:
R735.9
Download Full Text:
Downloaded:
2799
Download summary:
<Click Here>Downloaded:
2134Clicked:
5489
Cited:
4
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2016-04-15