|
Journal of Zhejiang University SCIENCE B
ISSN 1673-1581(Print), 1862-1783(Online), Monthly
2017 Vol.18 No.5 P.383-392
Rapid quantification of multi-components in alcohol precipitation liquid of Codonopsis Radix using near infrared spectroscopy (NIRS)
Abstract: A near infrared spectroscopy (NIRS) approach was established for quality control of the alcohol precipitation liquid in the manufacture of Codonopsis Radix. By applying NIRS with multivariate analysis, it was possible to build variation into the calibration sample set, and the Plackett-Burman design, Box-Behnken design, and a concentrating-diluting method were used to obtain the sample set covered with sufficient fluctuation of process parameters and extended concentration information. NIR data were calibrated to predict the four quality indicators using partial least squares regression (PLSR). In the four calibration models, the root mean squares errors of prediction (RMSEPs) were 1.22 μg/ml, 10.5 μg/ml, 1.43 μg/ml, and 0.433% for lobetyolin, total flavonoids, pigments, and total solid contents, respectively. The results indicated that multi-components quantification of the alcohol precipitation liquid of Codonopsis Radix could be achieved with an NIRS-based method, which offers a useful tool for real-time release testing (RTRT) of intermediates in the manufacture of Codonopsis Radix.
Key words: Near infrared spectroscopy; Codonopsis Radix; Alcohol precipitation; Real-time release testing; Multi-components quantification
创新点:采用近红外光谱技术建立党参醇沉过程中间体的质控方法,实现醇沉上清液中4种关键质量属性的同时定量。
方法:将近红外光谱技术与多变量数据处理相结合,在建模样本制备中,通过实验设计的方法引入过程参数的波动(表1和表2),先浓缩后稀释的方法进一步扩大样品浓度范围,以模型预测能力为指标选择了最优的预处理方法、建模波段和回归算法,得到4个指标的最佳回归模型。
结论:实现了党参醇沉上清液中4类指标的近红外光谱快速分析法,所建党参炔苷、总黄酮、色素和固含量模型的预测均方根误差(RMSEP)值分别为1.22 µg/ml、10.50 µg/ml、1.43 µg/ml和0.433%。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.B1600141
CLC number:
R917
Download Full Text:
Downloaded:
2905
Download summary:
<Click Here>Downloaded:
2032Clicked:
4991
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2017-04-19