Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE B

ISSN 1673-1581(Print), 1862-1783(Online), Monthly

Glycyrrhizic acid activates chicken macrophages and enhances their Salmonella-killing capacity in vitro

Abstract: Objective: Salmonella enterica remains a major cause of food-borne disease in humans, and Salmonella Typhimurium (ST) contamination of poultry products is a worldwide problem. Since macrophages play an essential role in controlling Salmonella infection, the aim of this study was to evaluate the effect of glycyrrhizic acid (GA) on immune function of chicken HD11 macrophages. Methods: Chicken HD11 macrophages were treated with GA (0, 12.5, 25, 50, 100, 200, 400, or 800 μg/ml) and lipopolysaccharide (LPS, 500 ng/ml) for 3, 6, 12, 24, or 48 h. Evaluated responses included phagocytosis, bacteria-killing, gene expression of cell surface molecules (cluster of differentiation 40 (CD40), CD80, CD83, and CD197) and antimicrobial effectors (inducible nitric oxide synthase (iNOS), NADPH oxidase-1 (NOX-1), interferon-γ (IFN-γ), LPS-induced tumor necrosis factor (TNF)-α factor (LITAF), interleukin-6 (IL-6), and IL-10), and production of nitric oxide (NO) and hydrogen peroxide (H2O2). Results: GA increased the internalization of both fluorescein isothiocyanate (FITC)-dextran and ST by HD11 cells and markedly decreased the intracellular survival of ST. We found that the messenger RNA (mRNA) expression of cell surface molecules (CD40, CD80, CD83, and CD197) and cytokines (IFN-γ, IL-6, and IL-10) of HD11 cells was up-regulated following GA exposure. The expression of iNOS and NOX-1 was induced by GA and thereby the productions of NO and H2O2 in HD11 cells were enhanced. Notably, it was verified that nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways were responsible for GA-induced synthesis of NO and IFN-γ gene expression. Conclusions: Taken together, these results suggested that GA exhibits a potent immune regulatory effect to activate chicken macrophages and enhances Salmonella-killing capacity.

Key words: Glycyrrhizic acid; Chicken macrophage; Macrophage activation; Salmonella Typhimurium; Nuclear factor κB (NF-κB); c-Jun N-terminal kinase (JNK)

Chinese Summary  <27> 甘草酸对体外鸡巨噬细胞免疫和杀菌功能的影响

关键词组:甘草酸;鸡巨噬细胞;巨噬细胞活化;鼠伤寒沙门氏菌;核因子κB(NF-κB);c-Jun氨基端激酶(JNK)


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.B1700506

CLC number:

S816.3

Download Full Text:

Click Here

Downloaded:

2727

Download summary:

<Click Here> 

Downloaded:

1875

Clicked:

5396

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2018-09-10

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE