Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE B

ISSN 1673-1581(Print), 1862-1783(Online), Monthly

Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications

Abstract: In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this paper, we characterize the porous Ti6Al4V implant, which is one of the most promising and attractive biomedical applications due to the similarity of its modulus to human bones. We describe the mechanical properties of this implant, which we suggest is capable of providing important biological functions for bone tissue regeneration. We characterize a novel bionic design and fabrication process for porous implants. A design concept of “reducing dimensions and designing layer by layer” was used to construct layered slice and rod-connected mesh structure (LSRCMS) implants. Porous LSRCMS implants with different parameters and porosities were fabricated by selective laser melting (SLM). Printed samples were evaluated by microstructure characterization, specific mechanical properties were analyzed by mechanical tests, and finite element analysis was used to digitally calculate the stress characteristics of the LSRCMS under loading forces. Our results show that the samples fabricated by SLM had good structure printing quality with reasonable pore sizes. The porosity, pore size, and strut thickness of manufactured samples ranged from (60.95± 0.27)% to (81.23±0.32)%, (480±28) to (685±31) μm, and (263±28) to (265±28) μm, respectively. The compression results show that the Young’s modulus and the yield strength ranged from (2.23±0.03) to (6.36±0.06) GPa and (21.36±0.42) to (122.85±3.85) MPa, respectively. We also show that the Young’s modulus and yield strength of the LSRCMS samples can be predicted by the Gibson-Ashby model. Further, we prove the structural stability of our novel design by finite element analysis. Our results illustrate that our novel SLM-fabricated porous Ti6Al4V scaffolds based on an LSRCMS are a promising material for bone implants, and are potentially applicable to the field of bone defect repair.

Key words: Layered slice and rod-connected mesh structure (LSRCMS); Porous Ti6Al4V implant; Bone defect repair; Selective laser melting (SLM); Mechanical properties; Finite element analysis

Chinese Summary  <20> 用于生物医学的新型多孔Ti6Al4V植入物的仿生设计和3D打印

关键词组:分层片状杆连接多孔结构(LSRCMS);多孔Ti6Al4V植入体;骨缺损修复;选择性激光熔融(SLM);机械性能;有限元分析


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.B1800622

CLC number:

TH781

Download Full Text:

Click Here

Downloaded:

2899

Download summary:

<Click Here> 

Downloaded:

1745

Clicked:

4115

Cited:

0

On-line Access:

2019-07-05

Received:

2018-12-14

Revision Accepted:

2019-03-13

Crosschecked:

2019-06-15

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE