Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE B

ISSN 1673-1581(Print), 1862-1783(Online), Monthly

Effects of calcium-binding sites in the S2–S3 loop on human and Nematostella vectensis TRPM2 channel gating processes

Abstract: As a crucial signaling molecule, calcium plays a critical role in many physiological and pathological processes by regulating ion channel activity. Recently, one study resolved the structure of the transient receptor potential melastatin 2 (TRPM2) channel from Nematostella vectensis (nvTRPM2). This identified a calcium-binding site in the S2–S3 loop, while its effect on channel gating remains unclear. Here, we investigated the role of this calcium-binding site in both nvTRPM2 and human TRPM2 (hTRPM2) by mutagenesis and patch-clamp recording. Unlike hTRPM2, nvTRPM2 cannot be activated by calcium alone. Moreover, the inactivation rate of nvTRPM2 was decreased as intracellular calcium concentration was increased. In addition, our results showed that the four key residues in the calcium-binding site of S2–S3 loop have similar effects on the gating processes of nvTRPM2 and hTRPM2. Among them, the mutations at negatively charged residues (glutamate and aspartate) substantially decreased the currents of nvTRPM2 and hTRPM2. This suggests that these sites are essential for calcium-dependent channel gating. For the charge-neutralizing residues (glutamine and asparagine) in the calcium-binding site, our data showed that glutamine mutating to alanine or glutamate did not affect the channel activity, but glutamine mutating to lysine caused loss of function. Asparagine mutating to aspartate still remained functional, while asparagine mutating to alanine or lysine led to little channel activity. These results suggest that the side chain of glutamine has a less contribution to channel gating than does asparagine. However, our data indicated that both glutamine mutating to alanine or glutamate and asparagine mutating to aspartate accelerated the channel inactivation rate, suggesting that the calcium-binding site in the S2–S3 loop is important for calcium-dependent channel inactivation. Taken together, our results uncovered the effect of four key residues in the S2–S3 loop of TRPM2 on the TRPM2 gating process.

Key words: TRPM2; Calcium-binding site; S2–S3 loop; Channel activation; Channel inactivation

Chinese Summary  <27> S2-S3 loop中钙离子结合位点对人类及海葵来源TRPM2通道门控过程的影响研究

关键词组:M2型瞬时受体电位通道(TRPM2);钙离子结合位点;S2-S3 loop;通道激活;通道失活


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.B1900477

CLC number:

Q615

Download Full Text:

Click Here

Downloaded:

2213

Download summary:

<Click Here> 

Downloaded:

1673

Clicked:

3586

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2019-10-23

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE