Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE B

ISSN 1673-1581(Print), 1862-1783(Online), Monthly

A novel porous silica-zirconia coating for improving bond performance of dental zirconia

Abstract: ObjectiveTo coat a zirconia surface with silica-zirconia using a dip-coating technique and evaluate its effect on resin-zirconia shear bond strength (SBS).
MethodsA silica-zirconia suspension was prepared and used to coat a zirconia surface using a dip-coating technique. One hundred and eighty-nine zirconia disks were divided into three groups according to their different surface treatments (polishing, sandblasting, and silica-zirconia coating). Scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) were used to analyze the differently treated zirconia surfaces. Different primer treatments (Monobond N, Z-PRIME Plus, and no primer) were also applied to the zirconia surfaces. Subsequently, 180 composite resin cylinders (Filtek Z350) were cemented onto the zirconia disks with resin cement (RelyX Ultimate). The SBS was measured after water storage for 24 h or 6 months. The data were analyzed by two-way analysis of variance (ANOVA).
ResultsSEM and EDX showed that the silica-zirconia coating produced a porous layer with additional Si, and XRD showed that only tetragonal zirconia was on the silica-zirconia-coating surface. Compared with the control group, the resin-zirconia SBSs of the sandblasting group and silica-zirconia-coating group were significantly increased (P<0.05). The silica-zirconia coating followed by the application of Monobond N produced the highest SBS (P<0.05). Water aging significantly reduced the resin-zirconia SBS (P<0.05).
ConclusionsDip-coating with silica-zirconia might be a feasible way to improve resin-zirconia bonding.

Key words: Silica-zirconia coating; Zirconia; Bond performance; Shear bond strength (SBS)

Chinese Summary  <24> 新型硅锆多孔涂层提升氧化锆粘接性能的研究

目的:采用浸渍提拉法在氧化锆表面形成多孔硅锆涂层,评估表面特征及其对氧化锆-树脂粘接强度的影响。
创新点:将纳米氧化硅和氧化锆粉末制备成稳定的混合悬浮液,采用浸渍提拉法在氧化锆表面形成均匀、多孔、厚度可控的硅锆涂层,提升氧化锆粘接性能。
方法:在本研究中,我们将纳米氧化硅和氧化锆粉末在50%乙醇中分散,然后对悬浮液进行粒径分析和扫描电镜观察。我们采用浸渍提拉法在氧化锆表面形成硅锆涂层,使用扫描电镜、能量色散谱仪和X线衍射分析对涂层进行表面分析。氧化锆表面在涂布不同处理剂后,与树脂柱粘接。在水中存储24小时及6个月后,使用万能实验仪测量其剪切粘接强度,并分析其断裂模式。
结论:浸渍提拉法形成硅锆涂层是提升氧化锆粘接性能的有效方法。

关键词组:硅锆涂层;氧化锆;粘接性能;剪切粘接强度


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.B2000448

CLC number:

Download Full Text:

Click Here

Downloaded:

1817

Download summary:

<Click Here> 

Downloaded:

1284

Clicked:

3086

Cited:

0

On-line Access:

2021-03-12

Received:

2020-08-09

Revision Accepted:

2020-10-23

Crosschecked:

0000-00-00

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE