|
Journal of Zhejiang University SCIENCE B
ISSN 1673-1581(Print), 1862-1783(Online), Monthly
2021 Vol.22 No.3 P.214-222
A novel porous silica-zirconia coating for improving bond performance of dental zirconia
Abstract: ObjectiveTo coat a zirconia surface with silica-zirconia using a dip-coating technique and evaluate its effect on resin-zirconia shear bond strength (SBS).
MethodsA silica-zirconia suspension was prepared and used to coat a zirconia surface using a dip-coating technique. One hundred and eighty-nine zirconia disks were divided into three groups according to their different surface treatments (polishing, sandblasting, and silica-zirconia coating). Scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) were used to analyze the differently treated zirconia surfaces. Different primer treatments (Monobond N, Z-PRIME Plus, and no primer) were also applied to the zirconia surfaces. Subsequently, 180 composite resin cylinders (Filtek Z350) were cemented onto the zirconia disks with resin cement (RelyX Ultimate). The SBS was measured after water storage for 24 h or 6 months. The data were analyzed by two-way analysis of variance (ANOVA).
ResultsSEM and EDX showed that the silica-zirconia coating produced a porous layer with additional Si, and XRD showed that only tetragonal zirconia was on the silica-zirconia-coating surface. Compared with the control group, the resin-zirconia SBSs of the sandblasting group and silica-zirconia-coating group were significantly increased (P<0.05). The silica-zirconia coating followed by the application of Monobond N produced the highest SBS (P<0.05). Water aging significantly reduced the resin-zirconia SBS (P<0.05).
ConclusionsDip-coating with silica-zirconia might be a feasible way to improve resin-zirconia bonding.
Key words: Silica-zirconia coating; Zirconia; Bond performance; Shear bond strength (SBS)
创新点:将纳米氧化硅和氧化锆粉末制备成稳定的混合悬浮液,采用浸渍提拉法在氧化锆表面形成均匀、多孔、厚度可控的硅锆涂层,提升氧化锆粘接性能。
方法:在本研究中,我们将纳米氧化硅和氧化锆粉末在50%乙醇中分散,然后对悬浮液进行粒径分析和扫描电镜观察。我们采用浸渍提拉法在氧化锆表面形成硅锆涂层,使用扫描电镜、能量色散谱仪和X线衍射分析对涂层进行表面分析。氧化锆表面在涂布不同处理剂后,与树脂柱粘接。在水中存储24小时及6个月后,使用万能实验仪测量其剪切粘接强度,并分析其断裂模式。
结论:浸渍提拉法形成硅锆涂层是提升氧化锆粘接性能的有效方法。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.B2000448
CLC number:
Download Full Text:
Downloaded:
2287
Download summary:
<Click Here>Downloaded:
1541Clicked:
3843
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
0000-00-00