|
Journal of Zhejiang University SCIENCE B
ISSN 1673-1581(Print), 1862-1783(Online), Monthly
2022 Vol.23 No.2 P.102-122
Molecular hydrogen is a promising therapeutic agent for pulmonary disease
Abstract: Molecular hydrogen exerts biological effects on nearly all organs. It has anti-oxidative, anti-inflammatory, and anti-aging effects and contributes to the regulation of autophagy and cell death. As the primary organ for gas exchange, the lungs are constantly exposed to various harmful environmental irritants. Short- or long-term exposure to these harmful substances often results in lung injury, causing respiratory and lung diseases. Acute and chronic respiratory diseases have high rates of morbidity and mortality and have become a major public health concern worldwide. For example, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. An increasing number of studies have revealed that hydrogen may protect the lungs from diverse diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma, lung cancer, pulmonary arterial hypertension, and pulmonary fibrosis. In this review, we highlight the multiple functions of hydrogen and the mechanisms underlying its protective effects in various lung diseases, with a focus on its roles in disease pathogenesis and clinical significance.
Key words: Molecular hydrogen; Pulmonary disease; Reactive oxygen species (ROS); Oxidative stress; Inflammation
中南大学计算机学院,中国长沙市,410083
摘要:为降低传统多目标天线拓扑优化问题的计算量,本文提出一种基于竞争的二进制多目标灰狼优化算法(CBMOGWO)。该方法引入种群竞争机制,以减轻电磁(EM)仿真的负担并获取适当的适应度值。此外,我们引入余弦振荡函数来改进原始二进制多目标灰狼优化算法(BMOGWO)的线性收敛因子,以在探索和开发之间达到良好平衡。然后,通过与原始BMOGWO和传统二进制多目标粒子群优化(BMOPSO)在12个多目标优化测试问题(MOTPs)和4个多目标背包问题(MOKPs)上比较,验证了CBMOGWO的性能。最后,通过具有高维混合设计变量和多个目标的紧凑型高隔离双频多输入多输出(MIMO)天线的示例,验证了我们的方法在降低计算成本方面的有效性。实验结果表明,与传统方法相比,CBMOGWO节省近一半的计算成本,这表明我们的方法对于复杂天线拓扑优化问题是高效的。它为基于多目标进化算法(MOEA)以灵活高效的方式探索新的和意想不到的天线结构提供了新思路。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.B2100420
CLC number:
Download Full Text:
Downloaded:
2177
Download summary:
<Click Here>Downloaded:
713Clicked:
3609
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
0000-00-00