Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE B

ISSN 1673-1581(Print), 1862-1783(Online), Monthly

Prediction of birth weight in pregnancy with gestational diabetes mellitus using an artificial neural network

Abstract: Gestational diabetes mellitus (GDM) is common during pregnancy, with the prevalence reaching as high as 31.0% in some European regions (McIntyre et al., 2019). Dysfunction of the glucose metabolism in pregnancy can influence fetal growth via alteration of the intrauterine environment, resulting in an increased risk of abnormal offspring birth weight (McIntyre et al., 2019). Infants with abnormal birth weight will be faced with increased risks of neonatal complications in the perinatal period and chronic non-communicable diseases in childhood and adulthood (Mitanchez et al., 2015; McIntyre et al., 2019). Therefore, accurate estimation of birth weight for neonates from women with GDM is crucial for more sensible perinatal decision-making and improvement of perinatal outcomes. Timely antenatal intervention, with reference to accurately estimated fetal weight, may also decrease the risks of adverse long-term diseases.

Key words: Gestational diabetes mellitus; Birth weight; Prediction; Artificial neural network

Chinese Summary  <30> 应用人工神经网络预测妊娠期糖尿病新生儿出生体重

目的:建立一个预测妊娠期糖尿病新生儿出生体重的人工神经网络模型,并评估其预测的准确性。
创新点:妊娠期糖尿病新生儿出生体重的预测十分重要,但目前预测精度欠佳。本研究利用大样本量的临床数据,突破传统统计学方法,应用机器学习建立了一个基于人工神经网络的预测模型,其预测精度较传统方法有明显提升。
方法:收集2462名妊娠期糖尿病孕妇的临床数据,其中80%的数据用于构建一个前馈神经网络模型,并用反向传播算法和10折交叉验证法训练和优化;剩余20%的数据用于验证最终模型的性能,并将其与传统方法进行比较。
结论:本研究构建的人工神经网络模型对妊娠期糖尿病新生儿出生体重具有较高的预测精度,其预测能力优于传统方法,不足之处则在于其仍有可能会低估高出生体重。

关键词组:妊娠期糖尿病;出生体重;预测;人工神经网络


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.B2100753

CLC number:

Download Full Text:

Click Here

Downloaded:

1306

Download summary:

<Click Here> 

Downloaded:

496

Clicked:

1807

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2022-05-13

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE