|
Journal of Zhejiang University SCIENCE B
ISSN 1673-1581(Print), 1862-1783(Online), Monthly
2024 Vol.25 No.4 P.307-323
Nrf2-mediated ferroptosis of spermatogenic cells involved in male reproductive toxicity induced by polystyrene nanoplastics in mice
Abstract: Microplastics (MPs) and nanoplastics (NPs) have become hazardous materials due to the massive amount of plastic waste and disposable masks, but their specific health effects remain uncertain. In this study, fluorescence-labeled polystyrene NPs (PS-NPs) were injected into the circulatory systems of mice to determine the distribution and potential toxic effects of NPs in vivo. Interestingly, whole-body imaging found that PS-NPs accumulated in the testes of mice. Therefore, the toxic effects of PS-NPs on the reproduction systems and the spermatocytes cell line of male mice, and their mechanisms, were investigated. After oral exposure to PS-NPs, their spermatogenesis was affected and the spermatogenic cells were damaged. The spermatocyte cell line GC-2 was exposed to PS-NPs and analyzed using RNA sequencing (RNA-seq) to determine the toxic mechanisms; a ferroptosis pathway was found after PS-NP exposure. The phenomena and indicators of ferroptosis were then determined and verified by ferroptosis inhibitor ferrostatin-1 (Fer-1), and it was also found that nuclear factor erythroid 2-related factor 2 (Nrf2) played an important role in spermatogenic cell ferroptosis induced by PS-NPs. Finally, it was confirmed in vivo that this mechanism of Nrf2 played a protective role in PS-NPs-induced male reproductive toxicity. This study demonstrated that PS-NPs induce male reproductive dysfunction in mice by causing spermatogenic cell ferroptosis dependent on Nrf2.
Key words: Polystyrene nanoplastics (PS-NPs); Reproductive toxicity; Ferroptosis; Nuclear factor erythroid 2-related factor 2 (Nrf2)
1宁夏医科大学生育力保持教育部重点实验室,中国银川市,750004
2宁夏生殖与遗传学重点实验室,中国银川市,750004
摘要:由于大量塑料废弃物的排放和一次性口罩的广泛使用,所产生的微塑料(MPs)和纳米塑料(NPs)已被认为是有害物质,但它们对健康的具体影响仍不确定。本研究将荧光标记的聚苯乙烯纳米塑料(PS-NPs)注射到小鼠体内以确定NPs在体内的分布和潜在的毒性作用,通过动物活体成像发现PS-NPs在小鼠睾丸中有明显积累。因此,本文研究了PS-NPs对雄性小鼠生殖系统和对生精细胞的毒性作用及机制。通过雄性小鼠灌胃暴露50 nm和90 nm的PS-NPs后,其生精能力受到影响且生精细胞受损;在体外暴露发现,PS-NPs会影响精母细胞系GC-2的存活;利用RNA-seq进一步分析其毒理机制,发现PS-NPs通过铁死亡途径影响GC-2细胞;通过线粒体形态、Fe2+水平、脂质过氧化、线粒体膜电位和不稳定铁等方面评价了PS-NPs引起GC-2细胞铁死亡的表型,进一步明确铁死亡抑制剂Fer-1可以逆转铁死亡表型。随后,发现Nrf2在PS-NPs诱导GC-2细胞铁死亡中起重要作用,并且抑制Nrf2后可加剧PS-NPs诱导的GC-2细胞铁死亡。最后,通过体内实验进一步证实了Nrf2在PS-NPs诱导的雄性生殖毒性中发挥保护作用。因此,本研究表明,PS-NPs通过引起Nrf2介导的生精细胞铁死亡进而导致小鼠雄性生殖功能障碍。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.B2300138
CLC number:
Download Full Text:
Downloaded:
887
Download summary:
<Click Here>Downloaded:
350Clicked:
1379
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2024-04-07