|
Journal of Zhejiang University SCIENCE B
ISSN 1673-1581(Print), 1862-1783(Online), Monthly
2024 Vol.25 No.7 P.605-616
Neuropeptide Y receptor Y8b (npy8br) regulates feeding and digestion in Japanese medaka (Oryzias latipes) larvae: evidence from gene knockout
Abstract: Neuropeptide Y receptor Y8 (NPY8R) is a fish-specific receptor with two subtypes, NPY8AR and NPY8BR. Changes in expression levels during physiological processes or in vivo regulation after ventricular injection suggest that NPY8BR plays an important role in feeding regulation; this has been found in only a few fish, at present. In order to better understand the physiological function of npy8br, especially in digestion, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology to generate npy8br-/- Japanese medaka (Oryzias latipes). We found that the deletion of npy8br in medaka larvae affected their feeding and digestion ability, ultimately affecting their growth. Specifically, npy8br deficiency in medaka larvae resulted in decreased feed intake and decreased expression levels of orexigenic genes (npy and agrp). npy8br-/- medaka larvae fed for 10 d (10th day of feeding) still had incompletely digested brine shrimp (Artemia nauplii) in the digestive tract 8 h after feeding, the messenger RNA (mRNA) expression levels of digestion-related genes (amy, lpl, ctra, and ctrb) were significantly decreased, and the activity of amylase, trypsin, and lipase also significantly decreased. The deletion of npy8br in medaka larvae inhibited the growth and significantly decreased the expression of growth-related genes (gh and igf1). Hematoxylin and eosin (H&E) sections of intestinal tissue showed that npy8br-/- medaka larvae had damaged intestine, thinned intestinal wall, and shortened intestinal villi. So far, this is the first npy8br gene knockout model established in fish and the first demonstration that npy8br plays an important role in digestion.
Key words: Neuropeptide Y receptor Y8b (npy8br); Japanese medaka (Oryzias latipes); Knockout; Feeding; Digestion
1浙江大学计算机科学与技术学院,中国杭州市,310030
2浙江-新加坡人工智能与创新设计联合实验室,中国杭州市,310058
3阿里巴巴集团,中国杭州市,310034
摘要:在平面设计中,布局是前景设计元素和背景图像相互作用的结果。然而,现有的研究主要集中在提高布局生成算法性能上,忽略设计师在现实世界中应用这些方法时所必需的交互性和可控性。本文提出一个以用户为中心的布局设计系统Iris,它为设计师提供了一个交互式的环境加快工作流程。该环境支持用户约束输入、布局生成、自定义编辑和布局渲染。为满足设计师指定的多种约束,引入一种新的生成模型--多约束LayoutVQ-VAE,以推进在域内和域间多种条件约束下的布局生成。对所提模型进行定性和定量实验。实验结果表明,该模型在多个方面的表现优于目前最先进的模型或可与之相媲美。对Iris系统的用户研究进一步表明,该系统在显著提高设计效率的同时,也实现了接近人类设计师的布局设计。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.B2300312
CLC number:
Download Full Text:
Downloaded:
1014
Download summary:
<Click Here>Downloaded:
269Clicked:
1468
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2024-07-17