|
Journal of Zhejiang University SCIENCE B
ISSN 1673-1581(Print), 1862-1783(Online), Monthly
2024 Vol.25 No.6 P.499-512
Hemodialysis bilayer bionic blood vessels developed by the mechanical stimulation of hepatitis B viral X (HBX) gene- transfected hepatic stellate cells
Abstract: Artificial vascular graft (AVG) fistula is widely used for hemodialysis treatment in patients with renal failure. However, it has poor elasticity and compliance, leading to stenosis and thrombosis. The ideal artificial blood vessel for dialysis should replicate the structure and components of a real artery, which is primarily maintained by collagen in the extracellular matrix (ECM) of arterial cells. Studies have revealed that in hepatitis B virus (HBV)-induced liver fibrosis, hepatic stellate cells (HSCs) become hyperactive and produce excessive ECM fibers. Furthermore, mechanical stimulation can encourage ECM secretion and remodeling of a fiber structure. Based on the above factors, we transfected HSCs with the hepatitis B viral X (HBX) gene for simulating the process of HBV infection. Subsequently, these HBX-HSCs were implanted into a polycaprolactone-polyurethane (PCL-PU) bilayer scaffold in which the inner layer is dense and the outer layer consists of pores, which was mechanically stimulated to promote the secretion of collagen nanofiber from the HBX-HSCs and to facilitate crosslinking with the scaffold. We obtained an ECM-PCL-PU composite bionic blood vessel that could act as access for dialysis after decellularization. Then, the vessel scaffold was implanted into a rabbit’s neck arteriovenous fistula model. It exhibited strong tensile strength and smooth blood flow and formed autologous blood vessels in the rabbit’s body. Our study demonstrates the use of human cells to create biomimetic dialysis blood vessels, providing a novel approach for creating clinical vascular access for dialysis.
Key words: Composite bilayer bionic blood vessel; Extracellular matrix (ECM); Hepatic stellate cells (HSCs); Hepatitis B viral X (HBX) gene; Mechanical force
机构:1温莎大学,工程系,加拿大温莎,N9B 3P4;2名古屋大学,工程学院,日本名古屋,464-8601;3青岛大学,计算机科学与技术学院,中国青岛,266071;4北京科技大学设计研究院有限公司,中国北京,100083;5山口大学,工学部,日本山口,755-8611
目的:在机器人与人类交互领域,软机器人提供了增强的安全性和适应性。该领域的一个主要挑战是将软执行器与泵系统集成。本研究旨在通过电场感应的介电流体流动,使机器人手指结合嵌入纯软电流体动力学(EHD)泵的柔性橡胶板,从而引起机器人手指的受控弯曲运动;并推导全面的数学模型,以准确描述手指机器人的机械表现。
创新点:1.赋予EHD泵驱动机器手指更加便捷的结构,并进行测试;2.提出了一个全面的数学模型来弥合EHD泵系统和手指动力学之间的差距,使该模型能准确描述从EHD驱动机构到机器人机械动作的整个系统。
方法:1.介绍手指机器人的结构(图1);2.详细阐述加工过程;3.通过数学建模,提出一个全面的数学模型来弥合EHD泵系统和手指动力学之间的误差,以准确描述从EHD驱动机构到机器人机械动作的整个系统(图2);4.通过实验验证理论模型的有效性(图5)。
结论:1.本研究的模型将EHD泵的电气特性(电压输入)与机器人机构的几何约束(偏转角)联系起来,使该模型的有效性得到验证;2.机器手指关节在10 kV下实现的最大弯曲角度为37°,证明了所提出的设计和方法的有效性。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.B2300479
CLC number:
Download Full Text:
Downloaded:
986
Download summary:
<Click Here>Downloaded:
366Clicked:
1597
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2024-06-24