|
Journal of Zhejiang University SCIENCE B
ISSN 1673-1581(Print), 1862-1783(Online), Monthly
2024 Vol.25 No.10 P.890-913
Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy
Abstract: Polyphenolic compounds have received tremendous attention in biomedicine because of their good biocompatibility and unique physicochemical properties. In recent years, phenolic-enabled nanotechnology (PEN) has become a hotspot of research in the medical field, and many promising studies have been reported, especially in the application of central nervous system (CNS) diseases. Polyphenolic compounds have superior anti-inflammatory and antioxidant properties, and can easily cross the blood‒brain barrier, as well as protect the nervous system from metabolic damage and promote learning and cognitive functions. However, although great advances have been made in this field, a comprehensive review regarding PEN-based nanomaterials for CNS therapy is lacking. A systematic summary of the basic mechanisms and synthetic strategies of PEN-based nanomaterials is beneficial for meeting the demand for the further development of novel treatments for CNS diseases. This review systematically introduces the fundamental physicochemical properties of PEN-based nanomaterials and their applications in the treatment of CNS diseases. We first describe the different ways in which polyphenols interact with other substances to form high-quality products with controlled sizes, shapes, compositions, and surface chemistry and functions. The application of PEN-based nanomaterials in the treatment of CNS diseases is then described, which provides a reference for subsequent research on the treatment of CNS diseases.
Key words: Phenolic-enabled nanotechnology (PEN); Metal-phenolic network; Polydopamine; Central nervous system (CNS); Drug delivery system
1浙江中医药大学药学院,浙江省神经药理学与转化研究重点实验室,中国杭州市,310053
2浙江中医药大学附属第三医院,中国杭州市,310009
摘要:酚类化合物因其良好的生物相容性和独特的理化性质,在生物医学领域受到极大关注。近年来,酚类纳米技术已成为医学领域的研究热点,特别是在中枢神经系统疾病的应用方面,已报道了许多具有广阔前景的研究成果。酚类化合物的优越性能包括抗炎、抗氧化、消炎、易透过血脑屏障,以及保护神经系统免受代谢损伤、促进学习和认知功能等。尽管这一领域已取得了巨大进展,但仍缺乏有关酚类纳米材料在中枢神经系统疾病治疗的全面综述。本文系统地总结了酚类纳米材料的基本理化性质和合成策略,以期满足进一步开发新型中枢神经系统疾病治疗方法的需求。本文首先介绍了酚类物质与其他物质的相互作用,它们可以通过不同的方式形成尺寸、形状、成分、表面化学性质和功能均可控的纳米材料。随后,本文对酚类纳米材料在中枢神经系统疾病治疗中的应用进行总结,以期为该领域后续的应用研究提供参考。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.B2300839
CLC number:
Download Full Text:
Downloaded:
721
Download summary:
<Click Here>Downloaded:
169Clicked:
951
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2024-10-18