|
Journal of Zhejiang University SCIENCE B
ISSN 1673-1581(Print), 1862-1783(Online), Monthly
2024 Vol.25 No.10 P.914-940
Artificial intelligence for brain disease diagnosis using electroencephalogram signals
Abstract: Brain signals refer to electrical signals or metabolic changes that occur as a consequence of brain cell activity. Among the various non-invasive measurement methods, electroencephalogram (EEG) stands out as a widely employed technique, providing valuable insights into brain patterns. The deviations observed in EEG reading serve as indicators of abnormal brain activity, which is associated with neurological diseases. Brain‒computer interface (BCI) systems enable the direct extraction and transmission of information from the human brain, facilitating interaction with external devices. Notably, the emergence of artificial intelligence (AI) has had a profound impact on the enhancement of precision and accuracy in BCI technology, thereby broadening the scope of research in this field. AI techniques, encompassing machine learning (ML) and deep learning (DL) models, have demonstrated remarkable success in classifying and predicting various brain diseases. This comprehensive review investigates the application of AI in EEG-based brain disease diagnosis, highlighting advancements in AI algorithms.
Key words: Brain disease; Electroencephalography; Brain computer interface; Artificial intelligence
1浙江大学生物医学工程与仪器科学学院,生物传感器国家专业实验室,生物医学工程教育部重点实验室,中国杭州市,310027
2浙江大学教育部脑与脑机融合前沿科学中心,中国杭州市,310027
3浙江大学脑机智能全国重点实验室,中国杭州市,310027
摘要:大脑信号反映了脑细胞活动引起的电信号变化或代谢变化。在各种非侵入性测量方法中,脑电图作为一种广泛应用的技术可以帮助了解大脑模式。脑电图中的异常读数可作为与神经系统疾病相关的脑活动的指标。脑机接口(BCI)系统能够直接从人脑提取和传输信息,从而实现与外部设备的交互。人工智能(AI)的出现极大地提高了BCI技术精度和准确性,并拓宽了该领域的研究范围。AI技术包括机器学习(ML)和深度学习(DL)模型,可以利用脑信号对各种脑部疾病进行分类和预测。本文综述了AI在基于脑电图的脑部疾病诊断中的应用,特别是AI算法在该领域应用的进展。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.B2400103
CLC number:
Download Full Text:
Downloaded:
329
Download summary:
<Click Here>Downloaded:
149Clicked:
533
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked: