|
Journal of Zhejiang University SCIENCE C
ISSN 1869-1951(Print), 1869-196x(Online), Monthly
2011 Vol.12 No.2 P.83-87
Binary tree of posterior probability support vector machines
Abstract: Posterior probability support vector machines (PPSVMs) prove robust against noises and outliers and need fewer storage support vectors (SVs). Gonen et al. (2008) extended PPSVMs to a multiclass case by both single-machine and multimachine approaches. However, these extensions suffer from low classification efficiency, high computational burden, and more importantly, unclassifiable regions. To achieve higher classification efficiency and accuracy with fewer SVs, a binary tree of PPSVMs for the multiclass classification problem is proposed in this letter. Moreover, a Fisher ratio separability measure is adopted to determine the tree structure. Several experiments on handwritten recognition datasets are included to illustrate the proposed approach. Specifically, the Fisher ratio separability accelerated binary tree of PPSVMs obtains overall test accuracy, if not higher than, at least comparable to those of other multiclass algorithms, while using significantly fewer SVs and much less test time.
Key words: Binary tree, Support vector machine, Handwritten recognition, Classification
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.C1000022
CLC number:
TP391
Download Full Text:
Downloaded:
3056
Clicked:
8133
Cited:
2
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2010-12-30