|
Journal of Zhejiang University SCIENCE C
ISSN 1869-1951(Print), 1869-196x(Online), Monthly
2012 Vol.13 No.4 P.295-307
A multi-agent framework for mining semantic relations from Linked Data
Abstract: Linked data is a decentralized space of interlinked Resource Description Framework (RDF) graphs that are published, accessed, and manipulated by a multitude of Web agents. Here, we present a multi-agent framework for mining hypothetical semantic relations from linked data, in which the discovery, management, and validation of relations can be carried out independently by different agents. These agents collaborate in relation mining by publishing and exchanging inter-dependent knowledge elements, e.g., hypotheses, evidence, and proofs, giving rise to an evidentiary network that connects and ranks diverse knowledge elements. Simulation results show that the framework is scalable in a multi-agent environment. Real-world applications show that the framework is suitable for interdisciplinary and collaborative relation discovery tasks in social domains.
Key words: Semantic Web, Linked open data, Semantic association discovery
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.C1101010
CLC number:
TP311
Download Full Text:
Downloaded:
2910
Clicked:
7746
Cited:
1
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2012-02-27