|
Journal of Zhejiang University SCIENCE C
ISSN 1869-1951(Print), 1869-196x(Online), Monthly
2014 Vol.15 No.7 P.537-550
Probabilistic hypergraph based hash codes for social image search
Abstract: With the rapid development of the Internet, recent years have seen the explosive growth of social media. This brings great challenges in performing efficient and accurate image retrieval on a large scale. Recent work shows that using hashing methods to embed high-dimensional image features and tag information into Hamming space provides a powerful way to index large collections of social images. By learning hash codes through a spectral graph partitioning algorithm, spectral hashing (SH) has shown promising performance among various hashing approaches. However, it is incomplete to model the relations among images only by pairwise simple graphs which ignore the relationship in a higher order. In this paper, we utilize a probabilistic hypergraph model to learn hash codes for social image retrieval. A probabilistic hypergraph model offers a higher order representation among social images by connecting more than two images in one hyperedge. Unlike a normal hypergraph model, a probabilistic hypergraph model considers not only the grouping information, but also the similarities between vertices in hyperedges. Experiments on Flickr image datasets verify the performance of our proposed approach.
Key words: Hypergraph Laplacian, Probabilistic hypergraph, Hash codes, Image search
创新要点:利用概率超图建立社交图片之间语义层面和视觉特征层面的关联性。相比简单图模型,超图模型能更有效地描述不同图片之间的高层次联系,寻找社交网络图片之间更深层次的信息。相比一般超图,概率超图能更有效地表述节点对超边的归属程度。利用超图拉普拉斯矩阵将概率超图投影到汉明(Hamming)空间,极大提升了图像存储、检索效率。
方法提亮:本方法结合了社交网络图片的视觉特征和用户标注信息,利用概率超图挖掘这两种信息的高层次关联性,并根据具体情况给予这两种信息不同权重。
重要结论:实验数据表明,与现有哈希检索方法相比,该方法对社交图像进行快速检索的准确率有较大提升。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.C1300268
CLC number:
TP391
Download Full Text:
Downloaded:
3674
Download summary:
<Click Here>Downloaded:
2210Clicked:
8960
Cited:
1
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2014-06-16