|
Journal of Zhejiang University SCIENCE C
ISSN 1869-1951(Print), 1869-196x(Online), Monthly
2014 Vol.15 No.8 P.636-650
Knowledge modeling based on interval-valued fuzzy rough set and similarity inference: prediction of welding distortion
Abstract: Knowledge-based modeling is a trend in complex system modeling technology. To extract the process knowledge from an information system, an approach of knowledge modeling based on interval-valued fuzzy rough set is presented in this paper, in which attribute reduction is a key to obtain the simplified knowledge model. Through defining dependency and inclusion functions, algorithms for attribute reduction and rule extraction are obtained. The approximation inference plays an important role in the development of the fuzzy system. To improve the inference mechanism, we provide a method of similarity-based inference in an interval-valued fuzzy environment. Combining the conventional compositional rule of inference with similarity based approximate reasoning, an inference result is deduced via rule translation, similarity matching, relation modification, and projection operation. This approach is applied to the problem of predicting welding distortion in marine structures, and the experimental results validate the effectiveness of the proposed methods of knowledge modeling and similarity-based inference.
Key words: Knowledge modeling, Interval-valued fuzzy rough set, Similarity-based inference, Welding distortion prediction
创新要点:将区间值模糊集与粗糙集理论结合,通过引入新的包含度来构造区间值模糊粗糙集模型,经过数据采集、区间值模糊化、属性约简、规则抽取等步骤,从信息系统中提取出一个简化的模糊知识模型,给出获取模糊知识模型的完整算法;通过对经典的合成规则推理与现有的相似性推理的机理分析,提出一种新的相似性推理--基于合成规则的相似性推理方法。
方法提亮:与现有的智能方法相比,本文的知识建模方法不依赖于经验知识,所构建的模型易于理解和编辑,运行速度快,计算精度较高,对复杂过程建模有较强的适应性。改进的相似性推理方法,既考虑规则前提与结论之间的内在关联,又把相似性匹配作为必要环节,这样,输入和前提所发生的变化均能在输出中反映出来,推理结果更趋合理。
重要结论:将上述方法应用在焊接变形预报方面,实验结果验证了算法有效性,表明算法对复杂过程建模具有较强适应性。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.C1300370
CLC number:
TP18
Download Full Text:
Downloaded:
3247
Download summary:
<Click Here>Downloaded:
2213Clicked:
8031
Cited:
1
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2014-07-16