Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE C

ISSN 1869-1951(Print), 1869-196x(Online), Monthly

Degree elevation of unified and extended spline curves

Abstract: Unified and extended splines (UE-splines), which unify and extend polynomial, trigonometric, and hyperbolic B-splines, inherit most properties of B-splines and have some advantages over B-splines. The interest of this paper is the degree elevation algorithm of UE-spline curves and its geometric meaning. Our main idea is to elevate the degree of UE-spline curves one knot interval by one knot interval. First, we construct a new class of basis functions, called bi-order UE-spline basis functions which are defined by the integral definition of splines. Then some important properties of bi-order UE-splines are given, especially for the transformation formulae of the basis functions before and after inserting a knot into the knot vector. Finally, we prove that the degree elevation of UE-spline curves can be interpreted as a process of corner cutting on the control polygons, just as in the manner of B-splines. This degree elevation algorithm possesses strong geometric intuition.

Key words: Degree elevation, Unified and extended splines (UE-splines), Bi-order UE-splines, Corner cutting, Geometric explanation

Chinese Summary  <38> UE样条曲线的升阶

研究目的:针对UE样条悬而未决的升阶问题,给出UE样条的升阶方法,并揭示此方法的几何意义。
创新要点:引入一种新的样条基函数-双阶UE样条基函数。在原始节点向量中逐个插入互异节点,将UE样条函数按区间逐段升阶,最终使UE样条在整个定义域内达到升阶效果,并给出这种升阶方法的几何意义。
研究方法:由于曲线在节点处的连续性保持不变,低阶的UE样条曲线可由高阶UE样条曲线表示。首先,引入一种新的样条基函数-双阶UE样条基函数。这种样条基在整个节点区间有两种阶数。其中,前一段节点区间的次数比后一段节点区间的次数高1次(图1)。然后,通过往节点向量中插入节点,双阶UE样条基的某特定区间次数升高1次,从而得到双阶UE样条在节点插入前后的基函数关系(图2)继而得到节点插入前后双阶UE样条函数控制顶点之间的关系。通过逐个插入互异节点,可使UE样条逐段升阶。最后,根据节点插入前后的新旧控制顶点关系,证明UE样条的升阶可以理解为其控制多边形的割角过程(图3、4)。
重要结论:通过在节点向量中逐个插入互异节点,解决了UE样条的升阶问题,并证明了UE样条的升阶可以解释为其控制多边形的割角过程。

关键词组:升阶;UE样条;双阶UE样条;割角;几何解释


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.C1400076

CLC number:

TP391.7

Download Full Text:

Click Here

Downloaded:

2368

Download summary:

<Click Here> 

Downloaded:

1912

Clicked:

7260

Cited:

2

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2014-11-13

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE