|
Journal of Zhejiang University SCIENCE C
ISSN 1869-1951(Print), 1869-196x(Online), Monthly
2014 Vol.15 No.12 P.1174-1182
An algorithm for identifying symmetric variables in the canonical OR-coincidence algebra system
Abstract: To simplify the process for identifying 12 types of symmetric variables in the canonical OR-coincidence (COC) algebra system, we propose a new symmetry detection algorithm based on OR-NXOR expansion. By analyzing the relationships between the coefficient matrices of sub-functions and the order coefficient subset matrices based on OR-NXOR expansion around two arbitrary logical variables, the constraint conditions of the order coefficient subset matrices are revealed for 12 types of symmetric variables. Based on the proposed constraints, the algorithm is realized by judging the order characteristic square value matrices. The proposed method avoids the transformation process from OR-NXOR expansion to AND-OR-NOT expansion, or to AND-XOR expansion, and solves the problem of completeness in the dj-map method. The application results show that, compared with traditional methods, the new algorithm is an optimal detection method in terms of applicability of the number of logical variables, detection type, and complexity of the identification process. The algorithm has been implemented in C language and tested on MCNC91 benchmarks. Experimental results show that the proposed algorithm is convenient and efficient.
Key words: Symmetric variable, dj-map, Canonical OR-coincidence algebra system, Boolean function
创新要点:提出新的基于或-符合展开系数对称性检测算法。该算法可实现12类对称变量的完备性检测,同样适用于与-或-非代数系统和与-异或代数系统。
研究方法:首先,分析基于或-符合展开布尔函数的子函数系数矩阵和有序子系数矩阵之间的关系(公式5),提出基于有序子系数矩阵的12类对称形式的约束条件(表3)。根据该约束条件,通过判别dj图的有序特征格值,提出逻辑变量12类对称形式的快速检测算法(图4)。与其他方法相比(表7),该方法有效避免或-符合展开系数和与-异或展开系数及与-或-非展开系数之间的转换,同时解决了dj图方法中的完备性问题。算法用C语言实现并用MCNC91 benchmarks(表6)进行测试。
重要结论:提出或-符合代数系统中12类对称变量的检测算法。与其他方法相比,该算法在适用的检测变量数、检测类型、检测过程的复杂度方面最优。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.C1400093
CLC number:
TN431
Download Full Text:
Downloaded:
2790
Download summary:
<Click Here>Downloaded:
1922Clicked:
7114
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2014-11-13