Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE C

ISSN 1869-1951(Print), 1869-196x(Online), Monthly

Quasi-angle-preserving mesh deformation using the least-squares approach

Abstract: We propose an angle-based mesh representation, which is invariant under translation, rotation, and uniform scaling, to encode the geometric details of a triangular mesh. Angle-based mesh representation consists of angle quantities defined on the mesh, from which the mesh can be reconstructed uniquely up to translation, rotation, and uniform scaling. The reconstruction process requires solving three sparse linear systems: the first system encodes the length of edges between vertices on the mesh, the second system encodes the relationship of local frames between two adjacent vertices on the mesh, and the third system defines the position of the vertices via the edge length and the local frames. From this angle-based mesh representation, we propose a quasi-angle-preserving mesh deformation system with the least-squares approach via handle translation, rotation, and uniform scaling. Several detail-preserving mesh editing examples are presented to demonstrate the effectiveness of the proposed method.

Key words: Mesh deformation, Angle-based representation, Detail-preserving, Least-squares approach

Chinese Summary  <152> 基于最小二乘方法的拟保角网格变形

研究目的:网格模型的修改与编辑方法在数字娱乐、数值计算等领域有着重要应用。如何在网格编辑过程中更好地保持模型的几何细节,是网格变形方法中富有挑战性的重要问题。本文利用网格模型蕴涵的内在几何信息,提出基于最小二乘方法的拟保角网格变形方法,在变形过程中有效保持网格模型的几何细节。
创新要点:提出一种基于内在角度信息的离散网格表示方法,具有旋转、平移和均匀缩放不变性,是三角离散网格模型的新型表示方法。基于该网格表示形式和最小二乘方法,建立了拟保持网格角度度量的网格变形框架。与基于拉普拉斯微分坐标方法相比,可有效保持网格模型的几何细节特征。
重要结论:若干三角网格模型变形与编辑实例显示,在数字娱乐领域本文算法有效。

关键词组:网格编辑;网格变形;基于角度的网格表示;拟保角网格变形方法


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.C1400103

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

2742

Download summary:

<Click Here> 

Downloaded:

2194

Clicked:

7462

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2014-08-19

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE