|
Journal of Zhejiang University SCIENCE C
ISSN 1869-1951(Print), 1869-196x(Online), Monthly
2014 Vol.15 No.10 P.839-847
A bidirectional brain-computer interface for effective epilepsy control
Abstract: Brain-computer interfaces (BCIs) can provide direct bidirectional communication between the brain and a machine. Recently, the BCI technique has been used in seizure control. Usually, a closed-loop system based on BCI is set up which delivers a therapic electrical stimulus only in response to seizure onsets. In this way, the side effects of neurostimulation can be greatly reduced. In this paper, a new BCI-based responsive stimulation system is proposed. With an efficient morphology-based seizure detector, seizure events can be identified in the early stages which trigger electrical stimulations to be sent to the cortex of the brain. The proposed system was tested on rats with penicillin-induced epileptic seizures. Online experiments show that 83% of the seizures could be detected successfully with a short average time delay of 3.11 s. With the therapy of the BCI-based seizure control system, most seizures were suppressed within 10 s. Compared with the control group, the average seizure duration was reduced by 30.7%. Therefore, the proposed system can control epileptic seizures effectively and has potential in clinical applications.
Key words: Brain-computer interface, Epilepsy, Seizure detection, Responsive neurostimulation
创新要点:首先,提出"双阈值"癫痫检测算法,针对癫痫脑电波形态特征,实现在线快速检测;其次,建立闭环脑机接口系统,通过反应性高频皮层刺激,有效抑制癫痫。
试验结果:通过建立双向脑机接口技术,对脑电信号进行实时分析,从而在癫痫发作前期将其准确检测出来,并触发反应性电刺激,有效抑制癫痫。在青霉素癫痫大鼠模型上的对照试验表明,基于癫痫脑电形态学特征的癫痫检测方法,癫痫检测率83%,平均检测延迟3.11秒;实验组相比于对照组,平均癫痫发作时间减少30.7%。
重要结论:通过双向闭环脑机接口系统,能够实现"按需刺激",从而大大降低电刺激量,减小副作用和组织损伤。基于脑机接口的反应性电刺激系统,能够对癫痫进行实时检测和刺激,有效抑制癫痫发作。该系统具有临床应用潜力。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.C1400152
CLC number:
TP39; R31
Download Full Text:
Downloaded:
3350
Download summary:
<Click Here>Downloaded:
2130Clicked:
8128
Cited:
1
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2014-09-17