Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

On the hydrodynamic stability of a particle-laden flow in growing flat plate boundary layer

Abstract: The parabolized stability equation (PSE) was derived to study the linear stability of particle-laden flow in growing Blasius boundary layer. The stability characteristics for various Stokes numbers and particle concentrations were analyzed after solving the equation numerically using the perturbation method and finite difference. The inclusion of the nonparallel terms produces a reduction in the values of the critical Reynolds number compared with the parallel flow. There is a critical value for the effect of Stokes number, and the critical Stokes number being about unit, and the most efficient instability suppression takes place when Stokes number is of order 10. But the presence of the nonparallel terms does not affect the role of the particles in gas. That is, the addition of fine particles (Stokes number is much smaller than 1) reduces the critical Reynolds number while the addition of coarse particles (Stokes number is much larger than 1) enhances it. Qualitatively the effect of nonparallel mean flow is the same as that for the case of plane parallel flows.

Key words: Hydrodynamic stability, Blasius boundary layer, Particle-laden nonparallel flow, Numerical simulation


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.2007.A0275

CLC number:

O359

Download Full Text:

Click Here

Downloaded:

3204

Clicked:

5514

Cited:

13

On-line Access:

Received:

2006-03-28

Revision Accepted:

2006-10-17

Crosschecked:

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE