|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2017 Vol.18 No.9 P.704-717
Stochastic averaging of quasi partially integrable Hamiltonian systems under fractional Gaussian noise
Abstract: A stochastic averaging method for predicting the response of quasi partially integrable and non-resonant Hamiltonian systems to fractional Gaussian noise (fGn) with the Hurst index 1/2<H<1 is proposed. The averaged stochastic differential equations (SDEs) for the first integrals of the associated Hamiltonian system are derived. The dimension of averaged SDEs is less than that of the original system. The stationary probability density and statistics of the original system are obtained approximately from solving the averaged SDEs numerically. Two systems are worked out to illustrate the proposed stochastic averaging method. It is shown that the results obtained by using the proposed stochastic averaging method and those from digital simulation of original system agree well, and the computational time for the former results is less than that for the latter ones.
Key words: Fractional Brownian motion (fBm); Fractional Gaussian noise (fGn); Quasi partially integrable Hamiltonian system; Stochastic averaging method; Stationary response
创新点:现有文献ä¸ï¼Œå¯¹äºŽåˆ†æ•°é˜¶é«˜æ–¯å™ªå£°æ¿€åŠ±ä¸‹åŠ¨æ€ç³»ç»Ÿå“åº”çš„ç ”ç©¶ï¼Œå¤šä¸ºå•自由度或二自由度线性系统,而本文的方法针对的是多自由度强éžçº¿æ€§ç³»ç»Ÿï¼Œå¯é¢„测分数阶高斯噪声激励下的多自由度强éžçº¿æ€§ç³»ç»Ÿçš„稳æ€å“应。
方法:1. æ ¹æ®åˆ†æ•°é˜¶å¸ƒæœ—è¿åŠ¨çš„é¡ºå¼ç§¯åˆ†åŽŸç†åŠå…¶éšæœºå¾®åˆ†è§„åˆ™ï¼Œå°†åˆ†æ•°é˜¶é«˜æ–¯å™ªå£°æ¿€åŠ±ä¸‹çš„å¤šè‡ªç”±åº¦å¼ºéžçº¿æ€§ç³»ç»Ÿæ¨¡åž‹åŒ–为分数阶高斯噪声激励下的拟部分å¯ç§¯å“ˆå¯†é¡¿ç³»ç»Ÿã€‚2. è¿ç”¨éšæœºå¹³å‡åŽŸç†è¿›è¡Œé™ç»´ï¼Œå¾—åˆ°ç»´æ•°æ›´ä½Žçš„åˆ†æ•°é˜¶éšæœºå¾®åˆ†æ–¹ç¨‹ç»„,由æ¤ï¼ŒåŽŸç³»ç»Ÿå¯è¢«è¿™ç»„方程近似代替。3. è¿ç”¨æ•°å€¼æ–¹æ³•æ±‚è§£åˆ†æ•°é˜¶éšæœºå¾®åˆ†æ–¹ç¨‹ç»„,得到原系统的近似稳æ€å“应。
结论:1. 从平å‡åŽçš„åˆ†æ•°é˜¶éšæœºå¾®åˆ†æ–¹ç¨‹ç»„模拟得到的近似稳æ€å“应与原系统方程模拟得到的稳æ€å“应å»åˆåº¦è¾ƒé«˜ï¼Œè¯´æ˜Žäº†æ¤æ–¹æ³•的有效性。2. 模拟平å‡åŽçš„åˆ†æ•°é˜¶éšæœºå¾®åˆ†æ–¹ç¨‹ç»„的时间比模拟原系统方程的时间çŸå¾ˆå¤šï¼Œè¯´æ˜Žæ¤æ–¹æ³•效率高。
关键è¯ç»„:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A1600541
CLC number:
O32
Download Full Text:
Downloaded:
2910
Download summary:
<Click Here>Downloaded:
1890Clicked:
5263
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2017-08-15