|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2017 Vol.18 No.10 P.1654-1664
Function synthesis algorithm based on RTD-based three-variable universal logic gates
Abstract: Compared with complementary metal–oxide semiconductor (), the resonant tunneling device (RTD) has better performances; it is the most promising candidate for next-generation integrated circuit devices. The universal logic gate is an important unit circuit because of its powerful logic function, but there are few function synthesis algorithms that can implement an n-variable logical function by RTD-based universal logic gates. In this paper, we propose a new concept, i.e., the truth value matrix. With it a novel disjunctive decomposition algorithm can be used to decompose an arbitrary n-variable logical function into three-variable subset functions. On this basis, a novel function synthesis algorithm is proposed, which can implement arbitrary n-variable logical functions by RTD-based universal threshold logic gates (UTLGs), RTD-based three-variable XOR gates (XOR3s), and RTD-based three-variable universal logic gate (ULG3s). When this proposed function synthesis algorithm is used to implement an n-variable logical function, if the function is a directly disjunctive decomposition one, the circuit structure will be very simple, and if the function is a non-directly disjunctive decomposition one, the circuit structure will be simpler than when using only UTLGs or ULG3s. The proposed function synthesis algorithm is straightforward to program, and with this algorithm it is convenient to implement an arbitrary n-variable logical function by RTD-based universal logic gates.
Key words: Resonant tunneling device (RTD); Disjunctive decomposition algorithm; Universal logic gate; Truth value matrix; Function synthesis algorithm
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1601730
CLC number:
TN47
Download Full Text:
Downloaded:
2313
Download summary:
<Click Here>Downloaded:
1873Clicked:
7299
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2017-10-31