|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2022 Vol.23 No.3 P.422-437
A novel multiple-outlier-robust Kalman filter
Abstract: This paper presents a novel multiple-outlier-robust Kalman filter (MORKF) for linear stochastic discrete-time systems. A new multiple statistical similarity measure is first proposed to evaluate the similarity between two random vectors from dimension to dimension. Then, the proposed MORKF is derived via maximizing a multiple statistical similarity measure based cost function. The MORKF guarantees the convergence of iterations in mild conditions, and the boundedness of the approximation errors is analyzed theoretically. The selection strategy for the similarity function and comparisons with existing robust methods are presented. Simulation results show the advantages of the proposed filter.
Key words: Kalman filtering; Multiple statistical similarity measure; Multiple outliers; Fixed-point iteration; State estimate
哈尔滨工程大学智能科学与工程学院,中国哈尔滨市,150001
摘要:针对线性离散随机系统,提出一种新型多样野值鲁棒卡尔曼滤波器(MORKF)。首先提出一种新的多重统计相似度来衡量两个随机向量各维度之间的相似性。然后,通过最大化基于多重统计相似度量的代价函数,得到所提出的MORKF。MORKF保证了迭代在弱约束下的收敛性,且本文从理论上分析了近似误差的有界性。给出了相似函数的选择策略,并与现有鲁棒方法进行比较。仿真结果验证了该滤波器的优越性。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2000642
CLC number:
TP273
Download Full Text:
Downloaded:
9250
Download summary:
<Click Here>Downloaded:
559Clicked:
7060
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2021-03-01