Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

A novel multiple-outlier-robust Kalman filter

Abstract: This paper presents a novel multiple-outlier-robust Kalman filter (MORKF) for linear stochastic discrete-time systems. A new multiple statistical similarity measure is first proposed to evaluate the similarity between two random vectors from dimension to dimension. Then, the proposed MORKF is derived via maximizing a multiple statistical similarity measure based cost function. The MORKF guarantees the convergence of iterations in mild conditions, and the boundedness of the approximation errors is analyzed theoretically. The selection strategy for the similarity function and comparisons with existing robust methods are presented. Simulation results show the advantages of the proposed filter.

Key words: Kalman filtering; Multiple statistical similarity measure; Multiple outliers; Fixed-point iteration; State estimate

Chinese Summary  <26> 一种新型多样野值鲁棒卡尔曼滤波器

黄玉龙,柏明明,张勇刚
哈尔滨工程大学智能科学与工程学院,中国哈尔滨市,150001
摘要:针对线性离散随机系统,提出一种新型多样野值鲁棒卡尔曼滤波器(MORKF)。首先提出一种新的多重统计相似度来衡量两个随机向量各维度之间的相似性。然后,通过最大化基于多重统计相似度量的代价函数,得到所提出的MORKF。MORKF保证了迭代在弱约束下的收敛性,且本文从理论上分析了近似误差的有界性。给出了相似函数的选择策略,并与现有鲁棒方法进行比较。仿真结果验证了该滤波器的优越性。

关键词组:卡尔曼滤波;多重统计相似度量;多样野值;定点迭代;状态估计


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2000642

CLC number:

TP273

Download Full Text:

Click Here

Downloaded:

9250

Download summary:

<Click Here> 

Downloaded:

559

Clicked:

7060

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2021-03-01

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE