CLC number: TP393
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-11-22
Cited: 0
Clicked: 7369
Sheng-kang Yu, Xue-yi Zhao, Xi Li, Zhong-fei Zhang. Joint entity–relation knowledge embedding via cost-sensitive learning[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(11): 1867-1873.
@article{title="Joint entity–relation knowledge embedding via cost-sensitive learning",
author="Sheng-kang Yu, Xue-yi Zhao, Xi Li, Zhong-fei Zhang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="11",
pages="1867-1873",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601255"
}
%0 Journal Article
%T Joint entity–relation knowledge embedding via cost-sensitive learning
%A Sheng-kang Yu
%A Xue-yi Zhao
%A Xi Li
%A Zhong-fei Zhang
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 11
%P 1867-1873
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601255
TY - JOUR
T1 - Joint entity–relation knowledge embedding via cost-sensitive learning
A1 - Sheng-kang Yu
A1 - Xue-yi Zhao
A1 - Xi Li
A1 - Zhong-fei Zhang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 11
SP - 1867
EP - 1873
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601255
Abstract: As a joint-optimization problem which simultaneously fulfills two different but correlated embedding tasks (i.e., entity embedding and relation embedding), knowledge embedding problem is solved in a joint embedding scheme. In this embedding scheme, we design a joint compatibility scoring function to quantitatively evaluate the relational facts with respect to entities and relations, and further incorporate the scoring function into the max-margin structure learning process that explicitly learns the embedding vectors of entities and relations using the context information of the knowledge base. By optimizing the joint problem, our design is capable of effectively capturing the intrinsic topological structures in the learned embedding spaces. Experimental results demonstrate the effectiveness of our embedding scheme in characterizing the semantic correlations among different relation units, and in relation prediction for knowledge inference.
[1]Bollacker, K., Evans, C., Paritosh, P., et al., 2008. Freebase: a collaboratively created graph database for structuring human knowledge. Proc. Int. Conf. on ACM SIGMOD Management of Data, p.1247-1250.
[2]Bordes, A., Weston, J., Collobert, R., et al., 2011. Learning structured embeddings of knowledge bases. Proc. Comput. Sci., 108:345-354.
[3]Bordes, A., Usunier, N., Garcia-Duran, A., et al., 2013. Translating embeddings for modeling multi-relational data. NIPS, p.2787-2795.
[4]Bordes, A., Glorot, X., Weston, J., et al., 2014. A semantic matching energy function for learning with multi-relational data. Mach. Learn., 94(2):233-259.
[5]Chang, K.W., Yih, W.T., Meek, C., 2013. Multi-relational latent semantic analysis. Proc. Conf. on Empirical Methods in Natural Language Processing, p.1602-1612.
[6]Duchi, J., Hazan, E., Singer, Y., 2011. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res., 12:2121-2159.
[7]Elisseeff, A., Weston, J., 2001. A kernel method for multi-labelled classification. NIPS, p.681-687.
[8]García-Durán, A., Bordes, A., Usunier, N., 2015. Composing Relationships with Translations. Technical Report linebreak No. hal-01167811, CNRS-Heudiasyc, Compiègne.
[9]Getoor, L., Mihalkova, L., 2011. Learning statistical models from relational data. Proc. Int. Conf. on ACM SIGMOD Management of Data, p.1195-1198.
[10]Hoffmann, R., Zhang, C., Ling, X., et al., 2011. Knowledge-based weak supervision for information extraction of overlapping relations. Proc. 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, p.541-550.
[11]Jenatton, R., Roux, N.L., Bordes, A., et al., 2012. A latent factor model for highly multi-relational data. NIPS, p.3167-3175.
[12]Lin, Y.K., Liu, Z.Y., Luan, H.B., et al., 2015. Modeling relation paths for representation learning of knowledge bases. arXiv: 1506.00379. http://arxiv.org/abs/1506.00379
[13]Maaten, L.V.D., Hinton, G., 2008. Visualizing data using t-SNE. J. Mach. Learn. Res., 9:2579-2605.
[14]Miller, G.A., 1995. WordNet: a lexical database for English. Commun. ACM, 38(11):39-41.
[15]Nickel, M., Tresp, V., Kriegel, H.P., 2011. A three-way model for collective learning on multi-relational data. Proc. 28th Int. Conf. on Machine Learning, p.809-816.
[16]Singhal, A., 2012. Introducing the Knowledge Graph: Things, not Strings. Google. https://21stcenturylibrary.com/2012/05/21/introducing-googles-knowledge-graph-things-not-strings [Accessed on May 21, 2012].
[17]Socher, R., Chen, D., Manning, C.D., et al., 2013. Reasoning with neural tensor networks for knowledge base completion. NIPS, p.926-934.
[18]Wang, Z., Zhang, J.W., Feng, J.L., et al., 2014. Knowledge graph embedding by translating on hyperplanes. Proc. 28th Conf. on Artificial Intelligence, p.1112-1119.
[19]Waters, R., 2012. Google to unveil search results overhaul. Financial Times, May.
Open peer comments: Debate/Discuss/Question/Opinion
<1>