CLC number: TN953
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-01-17
Cited: 0
Clicked: 6556
Citations: Bibtex RefMan EndNote GB/T7714
Chenghu CAO, Yongbo ZHAO. Range estimation based on symmetry polynomial aided Chinese remainder theorem for multiple targets in a pulse Doppler radar[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(2): 304-316.
@article{title="Range estimation based on symmetry polynomial aided Chinese remainder theorem for multiple targets in a pulse Doppler radar",
author="Chenghu CAO, Yongbo ZHAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="2",
pages="304-316",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000418"
}
%0 Journal Article
%T Range estimation based on symmetry polynomial aided Chinese remainder theorem for multiple targets in a pulse Doppler radar
%A Chenghu CAO
%A Yongbo ZHAO
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 2
%P 304-316
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000418
TY - JOUR
T1 - Range estimation based on symmetry polynomial aided Chinese remainder theorem for multiple targets in a pulse Doppler radar
A1 - Chenghu CAO
A1 - Yongbo ZHAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 2
SP - 304
EP - 316
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000418
Abstract: To avoid Doppler ambiguity, pulse Doppler radar may operate on a high pulse repetition frequency (PRF). The use of a high PRF can, however, lead to range ambiguity in many cases. At present, the major efficient solution to solve range ambiguity is based on a waveform design scheme. It adds complexity to a radar system. However, the traditional multiple-PRF-based scheme is difficult to be applied in multiple targets because of unknown correspondence between the target range and measured range, especially using the Chinese remainder theorem (CRT) algorithm. We make a study of the CRT algorithm for multiple targets when the residue set contains noise error. In this paper, we present a symmetry polynomial aided CRT algorithm to effectively achieve range estimation of multiple targets when the measured ranges are overlapped with noise error. A closed-form and robust CRT algorithm for single target and the Aitken acceleration algorithm for finding roots of a polynomial equation are used to decrease the computational complexity of the proposed algorithm.
[1]Cao CH, Zhao YB, Pang XJ, et al., 2019. Method based on Chinese remainder theorem for range estimation of the target. Syst Eng Electron, 41(12):2717-2722 (in Chinese). doi: 10.3969/j.issn.1001-506X.2019.12.08
[2]Jin GD, Deng YK, Wang R, et al., 2019. Mitigating range ambiguities with advanced nonlinear frequency modulation waveform. IEEE Geosci Remote Sens Lett, 16(8):1230-1234. doi: 10.1109/LGRS.2019.2895111
[3]Kinghorn AM, Williams NK, 1997. The decodability of multiple-PRF radar waveforms. Proc Radar Systems, p.544-547. doi: 10.1049/cp:19971735
[4]Lei W, Long T, Zeng T, et al., 1999. The resolution of range ambiguity in a medium pulse Doppler radar. J Beijing Inst Technol, 19(3):357-360 (in Chinese). doi: 10.3969/j.issn.1001-0645.1999.03.020
[5]Levanon N, 2009. Mitigating range ambiguity in high PRF radar using inter-pulse binary coding. IEEE Trans Aerosp Electron Syst, 45(2):687-697. doi: 10.1109/TAES.2009.5089550
[6]Li XP, Xia XG, Wang WJ, et al., 2016. A robust generalized Chinese remainder theorem for two integers. IEEE Trans Inform Theory, 62(12):7491-7504. doi: 10.1109/TIT.2016.2614322
[7]Li XP, Cao YH, Yao BB, et al., 2018. Robust generalized Chinese-remainder-theorem-based DOA estimation for a coprime array. IEEE Access, 6:60361-60368. doi: 10.1109/ACCESS.2018.2875402
[8]Li XP, Huang TZ, Liao QY, et al., 2019. Optimal estimates of two common remainders for a robust generalized Chinese remainder theorem. IEEE Trans Signal Process, 67(7):1824-1837. doi: 10.1109/TSP.2019.2897945
[9]Liao HY, Xia XG, 2007. A sharpened dynamic range of a generalized Chinese remainder theorem for multiple integers. IEEE Trans Inform Theory, 53(1):428-433. doi: 10.1109/TIT.2006.887088
[10]Liu ZY, 2012. Ambiguity resolution for PD radar with remainder theorem and one-dimensional set algorithm. Mod Electron Technol, 35(9):28-30 (in Chinese). doi: 10.3969/j.issn.1004-373X.2012.09.010
[11]Ma C, Wang D, Li YQ, 2012. The one-dimensional algorithm applied on resolving range ambiguity in high-speed target. Guid Fuze, 33(2):1-5 (in Chinese). doi: 10.3969/j.issn.1671-0576.2012.02.001
[12]Mertens M, Ulmke M, Koch W, 2016. Ground target tracking with RCS estimation based on signal strength measurements. IEEE Trans Aerosp Electron Syst, 52(1):205-220. doi: 10.1109/TAES.2015.140866
[13]Silva B, Fraidenraich G, 2018. Performance analysis of the classic and robust Chinese remainder theorems in pulsed Doppler radars. IEEE Trans Signal Process, 66(18):4898-4903. doi: 10.1109/TSP.2018.2863667
[14]Tang X, Tharmarasa R, McDonald M, et al., 2017. Multiple detection-aided low-observable track initialization using ML-PDA. IEEE Trans Aerosp Electron Syst, 53(2):722-735. doi: 10.1109/TAES.2017.2664598
[15]Wang CH, Xu JW, Liao GS, et al., 2017. A range ambiguity resolution approach for high-resolution and wide-swath SAR imaging using frequency diverse array. IEEE J Sel Top Signal Process, 11(2):336-346. doi: 10.1109/JSTSP.2016.2605064
[16]Wang W, Li XP, Xia XG, et al., 2015. The largest dynamic range of a generalized Chinese remainder theorem for two integers. IEEE Signal Process Lett, 22(2):254-258. doi: 10.1109/LSP.2014.2322200
[17]Wang WJ, Xia XG, 2010. A closed-form robust Chinese remainder theorem and its performance analysis. IEEE Trans Signal Process, 58(11):5655-5666. doi: 10.1109/TSP.2010.2066974
[18]Wang WJ, Li XP, Wang W, et al., 2015. Maximum likelihood estimation based robust Chinese remainder theorem for real numbers and its fast algorithm. IEEE Trans Signal Process, 63(13):3317-3331. doi: 10.1109/TSP.2015.2413378
[19]Wang WQ, 2013. Mitigating range ambiguities in high-PRF SAR with OFDM waveform diversity. IEEE Geosci Remote Sens Lett, 10(1):101-105. doi: 10.1109/LGRS.2012.2193870
[20]Xi YH, Zhang XD, Li ZW, et al., 2018. Double-ended travelling-wave fault location based on residual analysis using an adaptive EKF. IET Signal Process, 12(8):1000-1008. doi: 10.1049/iet-spr.2017.0486
[21]Xia XG, 1999. On estimation of multiple frequencies in undersampled complex valued waveforms. IEEE Trans Signal Process, 47(12):3417-3419. doi: 10.1109/78.806088
[22]Xia XG, 2000. An efficient frequency-determination algorithm from multiple undersampled waveforms. IEEE Signal Process Lett, 7(2):34-37. doi: 10.1109/97.817380
[23]Xiao HS, Xia GQ, 2017. Notes on CRT-based robust frequency estimation. Signal Process, 133:13-17. doi: 10.1016/j.sigpro.2016.10.013
[24]Xiao HS, Xiao GQ, 2019. On solving ambiguity resolution with robust Chinese remainder theorem for multiple numbers. IEEE Trans Veh Technol, 68(5):5179-5184. doi: 10.1109/TVT.2019.2905240
[25]Xiao L, Xia XG, 2014. A generalized Chinese remainder theorem for two integers. IEEE Signal Process Lett, 21(1):55-59. doi: 10.1109/LSP.2013.2289326
[26]Xiao L, Xia XG, 2015. A new robust Chinese remainder theorem with improved performance in frequency estimation from undersampled waveforms. Signal Process, 117:242-246. doi: 10.1016/j.sigpro.2015.05.017
[27]Xiao L, Xia XG, 2018a. Frequency determination from truly sub-Nyquist samplers based on robust Chinese remainder theorem. Signal Process, 150:248-258. doi: 10.1016/j.sigpro.2018.04.022
[28]Xiao L, Xia XG, 2018b. Robust polynomial reconstruction via Chinese remainder theorem in the presence of small degree residue errors. IEEE Trans Circ Syst II, 65(11):1778-1782. doi: 10.1109/TCSII.2017.2756343
[29]Xiao L, Xia XG, Wang WJ, 2014. Multi-stage robust Chinese remainder theorem. IEEE Trans Signal Process, 62(18):4772-4785. doi: 10.1109/TSP.2014.2339798
[30]Xiao L, Xia XG, Huo HY, 2015. New conditions on achieving the maximal possible dynamic range for a generalized Chinese remainder theorem of multiple integers. IEEE Trans Signal Process Lett, 22(12):2199-2203. doi: 10.1109/LSP.2015.2469537
[31]Xiao L, Xia XG, Huo HY, 2017. Towards robustness in residue number systems. IEEE Trans Signal Process, 65(6):1497-1510. doi: 10.1109/TSP.2016.2641398
[32]Xu JW, Zhang YH, Liao GS, et al., 2020. Resolving range ambiguity via multiple-input multiple-output radar with element-pulse coding. IEEE Trans Signal Process, 68:2770-2783. doi: 10.1109/TSP.2020.2988371
[33]Zhang Y, Mu HL, Jiang YC, et al., 2019. Moving target tracking based on improved GMPHD filter in circular SAR system. IEEE Geosci Remote Sens Lett, 16(4):559-563. doi: 10.1109/LGRS.2018.2878467
[34]Zhao QC, Zhang Y, Wang R, et al., 2019. Estimation and removal of strong range ambiguities in multistatic synthetic aperture radar with multiple elevation beams. IEEE Geosci Remote Sens Lett, 16(3):407-411. doi: 10.1109/LGRS.2018.2875434
[35]Zhou GJ, Pelletier M, Kirubarajan T, et al., 2014. Statically fused converted position and Doppler measurement Kalman filters. IEEE Trans Aerosp Electron Syst, 50(1):300-318. doi: 10.1109/TAES.2013.120256
[36]Zhou R, Gao MG, Han YQ, 2002. Resolving ambiguity of multiple targets using residues’ difference look-up table. J Beijing Inst Technol, 22(2):221-224 (in Chinese). doi: 10.3969/j.issn.1001-0645.2002.02.023
Open peer comments: Debate/Discuss/Question/Opinion
<1>