Full Text:   <2585>

CLC number: O174.41; TN911.7

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 5270

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2005 Vol.6 No.7 P.760-763

http://doi.org/10.1631/jzus.2005.A0760


Reconstruction algorithm in lattice-invariant signal spaces


Author(s):  XIAN Jun

Affiliation(s):  Department of Mathematics, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   mathxj@zju.edu.cn

Key Words:  Lattice-invariant space, Reconstruction algorithm, Irregular sampling


XIAN Jun. Reconstruction algorithm in lattice-invariant signal spaces[J]. Journal of Zhejiang University Science A, 2005, 6(7): 760-763.

@article{title="Reconstruction algorithm in lattice-invariant signal spaces",
author="XIAN Jun",
journal="Journal of Zhejiang University Science A",
volume="6",
number="7",
pages="760-763",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A0760"
}

%0 Journal Article
%T Reconstruction algorithm in lattice-invariant signal spaces
%A XIAN Jun
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 7
%P 760-763
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A0760

TY - JOUR
T1 - Reconstruction algorithm in lattice-invariant signal spaces
A1 - XIAN Jun
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 7
SP - 760
EP - 763
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A0760


Abstract: 
In this paper, we mainly pay attention to the weighted sampling and reconstruction algorithm in lattice-invariant signal spaces. We give the reconstruction formula in lattice-invariant signal spaces, which is a generalization of former results in shift-invariant signal spaces. That is, we generalize and improve Aldroubi, Gröchenig and Chen’s results, respectively. So we obtain a general reconstruction algorithm in lattice-invariant signal spaces, which the signal spaces is sufficiently large to accommodate a large number of possible models. They are maybe useful for signal processing and communication theory.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Aldroubi, A., 2002. Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces. Appl. Comput. Harmon. Anal, 13:156-161.

[2] Aldroubi, A., Feichtinger, H., 1998. Exact iterative reconstruction algorithm for multivate irregular sampled functions in spline-like spaces: The Lp theory. Proc. Amer. Math. Soc., 126(9):2677-2686.

[3] Aldroubi, A., Feichtinger, H., 2002. Non-uniform Sampling: Exact Reconstruction from Non-uniformly Distributed Weighted-averages. In: Zhou, D.X. (Ed.), Wavelet Analysis: Twenty Years’ Developments. World Science Publishing, River Edge, NJ.

[4] Aldroubi,, A., Gröchenig, K., 2000. Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces. J. Fourier. Anal. Appl., 6(1):93-103.

[5] Aldroubi, A., Gröchenig, K., 2001. Non-uniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43(4):585-620.

[6] Bergh, J., Löfström, J., 1976. Interpolation Spaces. An Introduction. Springer-Verlag, Berlin.

[7] Chen, W., Itoh, S., Shiki, J., 2002. On sampling in shift invariant spaces. IEEE Trans. Information Theory, 48(10):2802-2810.

[8] Gröchenig, K., 2004. Localization of frames, Banach frames, and the invertibility of the frame operator. J. Fourier. Anal. Appl., 10(2):105-132.

[9] Jaffard, S., 1990. Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications. Ann. Inst. H. Poincaré Anal. Non Linéaire, 7(5):461-476.

[10] Lewitt, R.M., 1992. Alternatives to voxels for image representation in iterative reconstruction algorithm. Phys. Med. Biol., 37:705-716.

[11] Luo, S.P., Lin, W., 2004. Non-uniform sampling in shift-invariant spaces. Appl. Math. J. Chinese Univ. Ser. A, 19(1):62-74 (in Chinese).

[12] Sun, W.C., Zhou, X.W., 2002. Average sampling in spline subspaces. Appl. Math. Letter, 15:233-237.

[13] Xian, J., Qiang, X.F., 2003. Non-uniform sampling and reconstruction in weighted multiply generated shift-invariant spaces. Far. East. J. Math. Sci., 8(3):281-293.

[14] Xian, J., Lin, W., 2004. Sampling and reconstruction in time-warped spaces and their applications. Appl. Math. Comput., 157:153-173.

[15] Xian, J., Luo, S.P., Lin, W., 2004. Improved A-P iterative algorithm in spline subspaces. Lecture Notes in Computer Science, 3037:60-67.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE