CLC number: O343.2; TM15
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-02-26
Cited: 6
Clicked: 6775
Zhang-rong ZHAO, Yi-jie WU, Xin-jian GU, Lei ZHANG, Ji-feng YANG. Multi-physics coupling field finite element analysis on giant magnetostrictive materials smart component[J]. Journal of Zhejiang University Science A, 2009, 10(5): 653-660.
@article{title="Multi-physics coupling field finite element analysis on giant magnetostrictive materials smart component",
author="Zhang-rong ZHAO, Yi-jie WU, Xin-jian GU, Lei ZHANG, Ji-feng YANG",
journal="Journal of Zhejiang University Science A",
volume="10",
number="5",
pages="653-660",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820492"
}
%0 Journal Article
%T Multi-physics coupling field finite element analysis on giant magnetostrictive materials smart component
%A Zhang-rong ZHAO
%A Yi-jie WU
%A Xin-jian GU
%A Lei ZHANG
%A Ji-feng YANG
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 5
%P 653-660
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820492
TY - JOUR
T1 - Multi-physics coupling field finite element analysis on giant magnetostrictive materials smart component
A1 - Zhang-rong ZHAO
A1 - Yi-jie WU
A1 - Xin-jian GU
A1 - Lei ZHANG
A1 - Ji-feng YANG
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 5
SP - 653
EP - 660
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820492
Abstract: This study presents a new method to solve the difficult problem of precise machining a non-cylinder pinhole of a piston using embedded giant magnetostrictive material (GMM) in the component. We propose the finite element model of GMM smart component in electric, magnetic, and mechanical fields by step computation to optimize the design of GMM smart component. The proposed model is implemented by using COMSOL multi-physics V3.2a. The effects of the smart component on the deformation and the system resonance frequencies are studied. The results calculated by the model are in excellent agreement (relative errors are below 10%) with the experimental values.
[1] Benatar, J.G., Flatau, A.B., 2005. FEM implementation of a magnetostrictive transducer. Smart Structures and Materials, Proc. of SPIE, 5764:482-493.
[2] Besbes, M., Ren, Z., Razek, A., 2001. A generalized finite element model of magnetostriction phenomena. IEEE Transactions on Magnetics, 37(5):3324-3328.
[3] Claeyssen, F., Bossut, R., Boucher, D., 1990. Modeling and Characterization of the Magnetostricitive Coupling. Pro. Int. Work. Power Transducers for Sonics and Ultrasonics, Toulon, France, p.132-151.
[4] Claeyssen, F., Lhermet, N., le Letty, R., Bouchilloux, P., 1997. Actuators, transducers and motors based on giant magnetostrictive materials. Journal of Alloys and Compounds, 258:61-73.
[5] Dean, J., Gibbs, M.R.J., Schrefl, T., 2006. Finite-element analysis on cantilever beams coated with magnetostrictive material. IEEE Transactions on Magnetics, 42(2):283-288.
[6] Galopin, N., Mininger, X., Bouillault, F., Daniel, L., 2008. Finite element modeling of magnetoelectric sensors. IEEE Transactions on Magnetics, 44(6):834-837.
[7] Ghosh, D.P., Gopalakrishnan, S., 2007. A superconvergent finite element for composite beams with embedded magnetostrictive patches. Composite Structures, 79(3):315-330.
[8] Heinonen, E., Juuti, J., Leppävuori, S., 2005. Characterization and modelling of 3D piezoelectric ceramic structures with ATILA software. Journal of the European Ceramic Society, 25:2467-2470.
[9] Hu, D.J., Liu, R.M., Li, X.Q., Xu, L.M., 1999. Research and development of full automatic CNC special machine for boring piston pin hole. Modular Machine Tool and Automatic Manufacturing Technique, 1:27-30 (in Chinese).
[10] Kaltenbacher, M., Schneider, S., Simkovics, R., 2001. Nonlinear Finite Element Anlysis of Magnetostrictive Transducers. Proceedings of SPIE’s 8th Annual International Symposium on Smart Structures and Materials, Newport Beach, CA, USA, 4326:160-168.
[11] Karim, A., Mondher, B., Frederic, B., 2004. 3D FEM of magnetostriction phenomena using coupled constitutive laws. International Journal of Applied Electromagnetics and Mechanics, 19:367-371.
[12] Mo, X.P., Zhu, H.Q., Liu, J.G., 2000. Terfenol-D giant magnetostrictive transducer simulation by finite element method. Applied Acoustics, 19(4):5-8 (in Chinese).
[13] Perez-Aparicio, J.L., Sosa, H., 2004. A continuum three dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials. Smart Materials and Structures, 13(3):493-502.
[14] Silva, F.S., 2006. Fatigue on engine pistons—A compendium of case studies. Engineering Failure Analysis, 13:480-492.
[15] Suhara, T., Takei, T., Takiguti, M., 1996. Characteristics of friction force on piston pin boss bearings. JSAE Review, 17(4):453.
[16] Watts, R., Gibbs, M.R.J., Karl, W.J., 1997. Finite-element modeling of magnetostrictive bending of a coated cantilever. Applied Physics Letters, 70(19):2607-2609.
[17] Weng, J.Y., Weng, S.Y., 1998. Machining principle and equipment of non-cylinder pin hole of piston. Shanghai Machine Tool, 1:22-24 (in Chinese).
[18] Zhai, P., Zhang, X.R., Wang, H.T., Qin, L., Wang, X.L., 2007. Research on machining principle for non-cylinder piston pin hole based on GMM. Piezoelectric & Acoustooptics, 29(1):125-128 (in Chinese).
[19] Zhang, K., Hu, D.J., Ma, H.Q., 2003. Research on boring mechanism for piston noncircular pin hole. Modular Machine Tool and Automatic Manufacturing Technique, 8:4-8 (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>