Full Text:   <3784>

CLC number: TU46

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-01-23

Cited: 6

Clicked: 6556

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.2 P.94-100

http://doi.org/10.1631/jzus.A1200257


2D and 3D stability analysis of slurry trench in frictional/cohesive soil*


Author(s):  Chang-yu Han, Jin-jian Chen, Jian-hua Wang, Xiao-he Xia

Affiliation(s):  . Department of Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China

Corresponding email(s):   wjh417@sjtu.edu.cn

Key Words:  Limit analysis, Stability, Slurry trench, Diaphragm wall


Chang-yu Han, Jin-jian Chen, Jian-hua Wang, Xiao-he Xia. 2D and 3D stability analysis of slurry trench in frictional/cohesive soil[J]. Journal of Zhejiang University Science A, 2013, 14(2): 94-100.

@article{title="2D and 3D stability analysis of slurry trench in frictional/cohesive soil",
author="Chang-yu Han, Jin-jian Chen, Jian-hua Wang, Xiao-he Xia",
journal="Journal of Zhejiang University Science A",
volume="14",
number="2",
pages="94-100",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1200257"
}

%0 Journal Article
%T 2D and 3D stability analysis of slurry trench in frictional/cohesive soil
%A Chang-yu Han
%A Jin-jian Chen
%A Jian-hua Wang
%A Xiao-he Xia
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 2
%P 94-100
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200257

TY - JOUR
T1 - 2D and 3D stability analysis of slurry trench in frictional/cohesive soil
A1 - Chang-yu Han
A1 - Jin-jian Chen
A1 - Jian-hua Wang
A1 - Xiao-he Xia
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 2
SP - 94
EP - 100
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200257


Abstract: 
A 2D and 3D kinematically admissible rotational failure mechanism is presented for homogeneous slurry trenches in frictional/cohesive soils. Analytical approaches are derived to obtain the upper bounds on slurry trench stability in the strict framework of limit analysis. It is shown that the factor of safety from a 3D analysis will be greater than that from a 2D analysis. Compared with the limit equilibrium method, the limit analysis method yields an unconservative estimate on the safety factors. A set of examples are presented in a wide range of parameters for 2D and 3D homogeneous slurry trenches. The factor of safety increases with increasing slurry and soil bulk density ratio, cohesion, friction angle, and with decreasing slurry level depth and trench depth ratio, trench width and depth ratio. It is convenient to assess the safety for the homogeneous slurry trenches in practical applications.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Chen, J., Yin, J.H., Lee, C.F., 2003. Upper bound limit analysis of slope stability using rigid finite elements and nonlinear programming. Canadian Geotechnical Journal, 40(4):742-752. 


[2] Chen, W.F., 1975.  Limit Analysis and Soil Plasticity. Elsevier Scientific Publication Co.,Amsterdam and New York :

[3] Drucker, D., Prager, W., Greenberg, H., 1952. Extended limit design theorems for continuous media. Quarterly of Applied Mathmatics, 9(4):381-389. 

[4] Filz, G.M., Adams, T., Davidson, R.R., 2004. Stability of long trenches in sand supported by bentonite-water slurry. Journal of Geotechnical and Geoenvironmental Engineering, 130(9):915-921. 


[5] Fox, P.J., 2004. Analytical solutions for stability of slurry trench. Journal of Geotechnical and Geoenvironmental Engineering, 130(7):749-758. 


[6] Han, C.Y., Wang, J.H., Xia, X.H., Chen, J.J., 2012. Limit analysis for local and overall stability of slurry trench in cohesive soil. International Journal of Geomechanics, in press,:


[7] Han, C.Y., Xia, X.H., Wang, J.H., 2012. Upper bound solutions of ultimate bearing capacity of curved footing. Chinese Journal of Geotechnical Engineering, (in Chinese),34(2):230-236. 

[8] Han, C.Y., Xia, X.H., Wang, J.H., 2013. Analytical Solutions for Three-Dimensional Stability of Coastal Slope. New Frontiers in Engineering Geology and the Environment, Springer Berlin Heidelberg,9:181-185. 

[9] Hill, R., 1948. A variational principle of maximum plastic work in classical plasticity. The Quarterly Journal of Mechanics and Applied Mathematics, 1(1):18-28. 

[10] Jiang, P.M., Sheng, H., Lu, C.F., Mei, G.X., 2009. Rigorous solution of the slope ultimate bearing capacity. Chinese Journal of Engineering Mechanics, (in Chinese),26(Suppl. 1):77-80. 

[11] Kumar, J., Ghosh, P., 2007. Ultimate bearing capacity of two interfering rough strip footings. International Journal of Geomechanics, 7(1):53-62. 


[12] Loukidis, D., Bandini, P., Salgado, R., 2003. Stability of seismically loaded slopes using limit analysis. Geotechnique, 53(5):463-479. 


[13] Michalowski, R.L., 1995. Slope stability analysis: A kinematical approach. Geotechnique, 45(2):283-293. 


[14] Michalowski, R.L., Drescher, A., 2009. Three-dimensional stability of slopes and excavations. Geotechnique, 59(10):839-850. 


[15] Ng, C., Lings, M., 1995. Effects of modeling soil nonlinearity and wall installation on back-analysis of deep excavation in stiff clay. Journal of Geotechnical Engineering, 121(10):687-695. 


[16] Ng, C., Lings, M., Simpson, B., Nash, D., 1995. An approximate analysis of the three-dimensional effects of diaphragm wall installation. Geotechnique, 45(3):497-507. 


[17] Ng, C.W.W., Yan, R.W.M., 1998. Stress transfer and deformation mechanisms around a diaphragm wall panel. Journal of Geotechnical and Geoenvironmental Engineering, 124(7):638-648. 


[18] Ng, C.W.W., Yan, R.W.M., 1999. Three-dimensional modelling of a diaphragm wall construction sequence. Geotechnique, 49(6):825-834. 


[19] Oblozinsky, P., Ugai, K., Katagiri, M., Saitoh, K., Ishii, T., Masuda, T., Kuwabara, K., 2001. A design method for slurry trench wall stability in sandy ground based on the elasto-plastic FEM. Computers and Geotechnics, 28(2):145-159. 


[20] Tsai, J.S., 1997. Stability of weak sublayers in a slurry supported trench. Canadian Geotechnical Journal, 34(2):189-196. 


[21] Tsai, J.S., Chang, J.C., 1996. Three-dimensional stability analysis for slurry-filled trench wall in cohesionless soil. Canadian Geotechnical Journal, 33(5):798-808. 


[22] Tsai, J.S., Chang, C.C., Jou, L.D., 1998. Lateral extrusion analysis of sandwiched weak soil in slurry trench. Journal of Geotechnical and Geoenvironmental Engineering, 124(11):1082-1090. 


[23] Tsai, J.S., Jou, L.D., Hsieh, H.S., 2000. A full-scale stability experiment on a diaphragm wall trench. Canadian Geotechnical Journal, 37(2):379-392. 


[24] Xia, X.H., Han, C.Y., Wang, J.H., 2012. Analytical solutions for three-dimensional stability of limited slopes. Journal of Shanghai Jiaotong University (Science), 17(2):251-256. 


[25] Xu, Y., Wei, Z., Zhou, G., Sun, Y., 2011. Analysis of stability of slurry trench sides of diaphragm wall based on construction parameters. Chinese Journal of Rock Mechanics and Engineering, (in Chinese),30(Suppl. 2):3464-3470. 

[26] Yu, H.S., Salgado, R., Sloan, S.W., Kim, J.M., 1998. Limit analysis versus limit equilibrium for slope stability. Journal of Geotechnical and Geoenvironmental Engineering, 124(1):1-11. 


[27] Zhu, D.Y., Lee, C.F., Jiang, H.D., 2003. Generalised framework of limit equilibrium methods for slope stability analysis. Geotechnique, 53(4):377-395. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE