CLC number: O33; TB1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-12-11
Cited: 5
Clicked: 4336
Citations: Bibtex RefMan EndNote GB/T7714
Chun-li Zhang, Xiao-yuan Wang, Wei-qiu Chen, Jia-shi Yang. Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod[J]. Journal of Zhejiang University Science A, 2016, 17(1): 37-44.
@article{title="Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod",
author="Chun-li Zhang, Xiao-yuan Wang, Wei-qiu Chen, Jia-shi Yang",
journal="Journal of Zhejiang University Science A",
volume="17",
number="1",
pages="37-44",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500213"
}
%0 Journal Article
%T Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod
%A Chun-li Zhang
%A Xiao-yuan Wang
%A Wei-qiu Chen
%A Jia-shi Yang
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 1
%P 37-44
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500213
TY - JOUR
T1 - Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod
A1 - Chun-li Zhang
A1 - Xiao-yuan Wang
A1 - Wei-qiu Chen
A1 - Jia-shi Yang
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 1
SP - 37
EP - 44
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500213
Abstract: We made a theoretical study of the carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod of crystals of class 6 mm. Simple analytical expressions for the carrier distribution, electric potential, electric field, electric displacement, mechanical displacement, stress, and strain were obtained from a 1D nonlinear model reduced from the 3D equations for piezoelectric semiconductors. The distribution and fields were found to be either symmetric or antisymmetric about the center of the rod. They are qualitatively the same for electrons and holes. Numerical calculations show that the carrier distribution and the fields are relatively strong near the ends of the rod than in its central part. They are sensitive to the value of the carrier density near the ends of the rod.
The carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod has been investigated theoretically and numerically in present contribution. A theoretical solution has been given based on a one-dimensional model. Meanwhile, the carrier distribution and electromechanical fields are simulated qualitatively and quantitatively.I believe this is the first piece of theoretical work on the effect of carrier distribution in piezoelectric semiconductor rods.
[1]Auld, B.A., 1973. Acoustic Fields and Waves in Solids. John Wiley and Sons, New York, p.357-382.
[2]Büyükköse, S., Hernández-Mínguez, A., Vratzov, B., et al., 2014. High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology, 25(13):135204.
[3]de Lorenzi, H.G., Tiersten, H.F., 1975. On the interaction of the electromagnetic field with heat conducting deformable semiconductors. Journal of Mathematical Physics, 16(4):938-957.
[4]Ghosh, S.K., 2006. Acoustic wave amplification in ion-implanted piezoelectric semiconductor. Indian Journal of Pure and Applied Physics, 44(2):183-187.
[5]Graton, O., Poulin-Vittrant, G., Hue, L.T.H., et al., 2013. A strategy of modelling and simulation of electromechanical conversion in ZnO nanowires. Advances in Applied Ceramics, 112(2):85-90.
[6]Hiralal, P., Unalan, H.E., Amaratunga, G.A., 2012. Nanowires for energy generation. Nanotechnology, 23(19):194002.
[7]Hu, Y.T., Zeng, Y., Yang, J.S., 2007. A mode III crack in a piezoelectric semiconductor of crystals with 6mm symmetry. International Journal of Solids and Structures, 44(11-12):3928-3938.
[8]Hutson, A.R., White, D.L., 1962. Elastic wave propagation in piezoelectric semiconductors. Journal of Applied Physics, 33(1):40-47.
[9]Kumar, B., Kim, S.W., 2012. Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy, 1(3):342-355.
[10]Lee, P.C.Y., Liu, N.H., Ballato, A., 2004. Thickness vibrations of a piezoelectric plate with dissipation. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 51(1):52-62.
[11]Li, P., Jin, F., Yang, J.S., 2015. Effects of semiconduction on electromechanical energy conversion in piezoelectrics. Smart Materials and Structures, 24(2):025021.
[12]Maugin, G., Daher, N., 1986. Phenomenological theory of elastic semiconductors. International Journal of Engineering Science, 24(5):703-731.
[13]McCarthy, M.F., Tiersten, H.F., 1978. On integral forms of the balance laws for deformable semiconductors. Archive for Rational Mechanics and Analysis, 68(1):27-36.
[14]Navon, D.H., 1986. Semiconductor Microdevices and Materials. CBS College Publishing, New York.
[15]Pierret, R.F., 1988. Semiconductor Fundamentals, 2nd Edition. Addison-Wesley, Reading, Massachusetts, USA.
[16]Schülein, F.J.R., Müller, K., Bichler, M., et al., 2013. Acoustically regulated carrier injection into a single optically active quantum dot. Physical Review B, 88(8):085307.
[17]Sladek, J., Sladek, V., Pan, E.N., et al., 2014a. Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals. CMES: Computer Modeling in Engineering & Sciences, 99(4):273-296.
[18]Sladek, J., Sladek, V., Pan, E.N., et al., 2014b. Fracture analysis in piezoelectric semiconductors under a thermal load. Engineering Fracture Mechanics, 126:27-39.
[19]Tiersten, H.F., Sham, T.L., 1998. On the necessity of including electrical conductivity in the description of piezoelectric fracture in real materials. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 45(1):1-3.
[20]Wang, J., Zhao, W.H., Du, J.K., et al., 2011. The calculation of electrical parameters of AT-cut quartz crystal resonators with the consideration of material viscosity. Ultrasonics, 51(1):65-70.
[21]Wang, X.D., Zhou, J., Song, J.H., et al., 2006. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6(12):2768-2772.
[22]Wang, Z.L., 2007. Nanopiezotronics. Advanced Materials, 19(6):889-892.
[23]Wang, Z.L., 2010. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today, 5(6):540-552.
[24]Wauer, J., Suherman, S., 1997. Thickness vibrations of a piezo-semiconducting plate layer. International Journal of Engineering Science, 35(15):1387-1404.
[25]White, D.L., 1962. Amplification of ultrasonic waves in piezoelectric semiconductors. Journal of Applied Physics, 33(8):2547-2554.
[26]Willatzen, M., Christensen, J., 2014. Acoustic gain in piezoelectric semiconductors at ɛ-near-zero response. Physical Review B, 89(4):041201.
[27]Yang, J.S., 2005. An Introduction to the Theory of Piezoelectricity. Springer, Berlin.
[28]Yang, J.S., Zhou, H.G., 2004. Acoustoelectric amplification of piezoelectric surface waves. Acta Mechanica, 172(1-2):113-122.
[29]Yang, J.S., Zhou, H.G., 2005. Amplification of acoustic waves in piezoelectric semiconductor plates. International Journal of Solids and Structures, 42(11-12):3171-3183.
[30]Yang, J.S., Yang, X.M., Turner, J.A., 2005. Amplification of acoustic waves in piezoelectric semiconductor shells. Journal of Intelligent Material Systems and Structures, 16(7-8):613-621.
[31]Yang, J.S., Song, Y.C., Soh, A.K., 2006. Analysis of a circular piezoelectric semiconductor embedded in a piezoelectric semiconductor substrate. Archive of Applied Mechanics, 76(7-8):381-390.
[32]Yin, K., Lin, H.Y., Cai, Q., et al., 2013. Silicon nanowires nanogenerator based on the piezoelectricity of alpha-quartz. Nanoscale, 5(24):12330-12334.
[33]Yong, Y.K., Patel, M.S., Tanaka, M., 2010. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 57(8):1831-1839.
Open peer comments: Debate/Discuss/Question/Opinion
<1>