Full Text:   <3175>

Summary:  <55>

CLC number: 

On-line Access: 2026-01-12

Received: 2024-07-03

Revision Accepted: 2024-08-17

Crosschecked: 2026-01-12

Cited: 0

Clicked: 1767

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Da-peng Tan

https://orcid.org/0000-0002-6018-9648

Lin LI

https://orcid.org/0000-0002-3308-7857

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.12 P.1141-1162

http://doi.org/10.1631/jzus.A2400343


Piezoelectric ultrasonic coupling-based polishing of micro-tapered holes with abrasive flow


Author(s):  Gaoan ZHENG, Xiaoxing WENG, Tong WANG, Pu XU, Weixin XU, Lin LI, Xuefeng XU, Dapeng TAN

Affiliation(s):  College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; more

Corresponding email(s):   linli@zjut.edu.cn, tandapeng@zjut.edu.cn

Key Words:  Abrasive flow finishing, Micro-tapered holes, Piezoelectric ultrasonic coupling-based polishing, Surface quality, Polishing efficiency


Share this article to: More |Next Article >>>

Gaoan ZHENG, Xiaoxing WENG, Tong WANG, Pu XU, Weixin XU, Lin LI, Xuefeng XU, Dapeng TAN. Piezoelectric ultrasonic coupling-based polishing of micro-tapered holes with abrasive flow[J]. Journal of Zhejiang University Science A, 2025, 26(12): 1141-1162.

@article{title="Piezoelectric ultrasonic coupling-based polishing of micro-tapered holes with abrasive flow",
author="Gaoan ZHENG, Xiaoxing WENG, Tong WANG, Pu XU, Weixin XU, Lin LI, Xuefeng XU, Dapeng TAN",
journal="Journal of Zhejiang University Science A",
volume="26",
number="12",
pages="1141-1162",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2400343"
}

%0 Journal Article
%T Piezoelectric ultrasonic coupling-based polishing of micro-tapered holes with abrasive flow
%A Gaoan ZHENG
%A Xiaoxing WENG
%A Tong WANG
%A Pu XU
%A Weixin XU
%A Lin LI
%A Xuefeng XU
%A Dapeng TAN
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 12
%P 1141-1162
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2400343

TY - JOUR
T1 - Piezoelectric ultrasonic coupling-based polishing of micro-tapered holes with abrasive flow
A1 - Gaoan ZHENG
A1 - Xiaoxing WENG
A1 - Tong WANG
A1 - Pu XU
A1 - Weixin XU
A1 - Lin LI
A1 - Xuefeng XU
A1 - Dapeng TAN
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 12
SP - 1141
EP - 1162
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2400343


Abstract: 
The primary determinant of microfluidic chip performance is the surface quality of the micro-tapered holes. Due to the small scale of these holes and the high hardness of the surface attachments, the commonly used abrasive jet polishing method can encounter difficulties. Therefore, we propose a novel active multiphase field material removal technique. This technique is based on piezoelectric ultrasonically coupled abrasive particle flow. To study the connection between the impulse properties of the flow field and the micro-tapered hole’s asymptotic expansion–contraction process, a multiphase hybrid fluid dynamics model is established. Simultaneously, we investigate the process of abrasive–wall contact during the cycles of expansion and contraction, revealing the effects of erosion and polishing on different areas of the hole surface. To achieve accurate regulation of a desired polishing area, a quantitative relationship between the vibrational properties of piezoelectric ceramics and the erosional effect of micro-tapered holes is established. Finally, an experimental platform for micro-tapered hole polishing is built to validate the method.

基于压电超声耦合的磨粒流微锥孔抛光

作者:郑高安1,2,翁晓星1,4,王彤3,徐璞1,许炜鑫1,李霖1,许雪峰1,谭大鹏1
机构:1浙江工业大学,机械工程学院,中国杭州,310014;2浙江水利水电学院,机械工程学院,中国杭州,310018;3济宁学院,机电工程学院,中国济宁,273155;4浙江省农业机械研究院茶叶资源利用与农产品加工技术研究所,中国金华,321017
目的:微锥孔是介观尺度流体进行混合、反应与分离等作用的主要场所,其壁面质量对功能效果至关重要。本文旨在探讨压电超声耦合磨粒流的微锥孔抛光技术,研究超声作用下微锥孔流场特性与壁面冲蚀效果之间的定量关系,从而提升微锥孔壁面的加工质量。
创新点:1.建立针对微锥孔内壁面材料去除的压电超声耦合磨粒流抛光模型,并提出一种基于压电超声多能场耦合的颗粒运动求解方法,进而得到压电超声振动下颗粒-壁面碰撞机理和冲蚀特性;2.研究了周期性振动下微锥孔流场压力变化规律和磨粒运动轨迹,并实现了抛光区域冲蚀效果的主动调控。
方法:1.基于压电超声作用下锥孔的扩缩机制,结合DPM方法和改进的壁面处理技术,构建微锥孔脉动流场中的颗粒运动模型(公式(5));2.通过数值仿真,运用CFD-DPM方法及Finnie冲蚀模型分析微锥孔扩缩周期内流场的速度和压力分布以及颗粒运动轨迹(图7和8),并探讨振幅与频率对壁面冲蚀率和冲蚀位置的影响(图10和11);3.通过搭建PU-AP抛光实验平台,定量监测微锥孔表面粗糙度,并综合对比不同抛光时间的抛光效果,验证所提方法的可行性和有效性(图13)。
结论:1.计算得出了PU-AP过程中旋涡形成、磨粒运动和壁面冲蚀的全过程;2.磨粒的撞击频率和位置与微锥孔壁面抛光效果之间存在显著的映射关系,揭示了振动频率和幅值对微锥孔特定区域抛光效果的影响;3.不同抛光时间的对比实验表明,随着加工时间的增加,微锥孔壁面粗糙度显著降低,所以抛光效果得到明显改善。

关键词:磨粒流加工;微锥孔;压电超声耦合抛光;表面质量;抛光效率

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]ChenJ, MingWW, AnQL, et al., 2020. Mechanism and feasibility of ultrasonic-assisted milling to improve the machined surface quality of 2D Cf/SiC composites. Ceramics International, 46(10):15122-15136.

[2]ChenJT, GeM, LiL, et al., 2023. Material transport and flow pattern characteristics of gas–liquid–solid mixed flows. Processes, 11(8):2254.

[3]DengTT, ZhengZZ, LiJJ, et al., 2019. Surface polishing of AISI 304 stainless steel with micro plasma beam irradiation. Applied Surface Science, 476:796-805.

[4]DengTT, LiJJ, ZhengZZ, 2020. Fundamental aspects and recent developments in metal surface polishing with energy beam irradiation. International Journal of Machine Tools and Manufacture, 148:103472.

[5]FengJY, ZhangZY, YuSQ, et al., 2023. Novel multiphase jet polishing for complicated structured components produced by laser powder bed fusion. Additive Manufacturing, 72:103634.

[6]FettiplaceR, HaydonDA, 1980. Water permeability of lipid membranes. Physiological Reviews, 60(2):510-550.

[7]FinnieI, 1960. Erosion of surfaces by solid particles. Wear, 3(2):87-103.

[8]FinnieI, 1972. Some observations on the erosion of ductile metals. Wear, 19(1):81-90.

[9]ForderA, ThewM, HarrisonD, 1998. A numerical investigation of solid particle erosion experienced within oilfield control valves. Wear, 216(2):184-193.

[10]FuDN, ShengJ, WangLJ, et al., 2025. In situ silver-loaded cellulose for high-strength antibacterial composite air filtration paper. Cellulose, 32:3375-3388.

[11]GaoY, WuMR, LinY, et al., 2020. Acoustic microfluidic separation techniques and bioapplications: a review. Micromachines, 11(10):921.

[12]GaoYF, WangYP, WangYZ, et al., 2023. Nanocatalysis meets microfluidics: a powerful platform for sensitive bioanalysis. TrAC Trends in Analytical Chemistry, 158:116887.

[13]GeJQ, RenYL, LiC, et al., 2023. Ultrasonic coupled abrasive jet polishing (UC-AJP) of glass-based micro-channel for micro-fluidic chip. International Journal of Mechanical Sciences, 244:108055.

[14]GeJQ, LinYH, QiH, et al., 2024. The impact of ultrasonic-induced jet morphology on polishing efficiency. International Journal of Mechanical Sciences, 284:109764.

[15]GrantG, TabakoffW, 1975. Erosion prediction in turbomachinery resulting from environmental solid particles. Journal of Aircraft, 12(5):471-478.

[16]GuoXM, YangMY, LiFQ, et al., 2024. Investigation on cryogenic cavitation characteristics of an inducer considering thermodynamic effects. Energies, 17(15):3627.

[17]JiRQ, ShenQT, ZhangL, et al., 2024. Novel photocatalysis-assisted mechanical polishing of laser cladding cobalt-based alloy using TiO2 nanoparticles. Powder Technology, 444:119990.

[18]KimG, DenosBR, SterkenburgR, 2020. Influence of different piercing methods of abrasive waterjet on delamination of fiber reinforced composite laminate. Composite Structures, 240:112065.

[19]KowsariK, NouraeiH, JamesDF, et al., 2014. Abrasive slurry jet micro-machining of holes in brittle and ductile materials. Journal of Materials Processing Technology, 214(9):1909-1920.

[20]KumarAS, DebS, PaulS, 2021. Ultrasonic-assisted abrasive micro-deburring of micromachined metallic alloys. Journal of Manufacturing Processes, 66:595-607.

[21]LiJ, JiSM, TanDP, 2017. Improved soft abrasive flow finishing method based on turbulent kinetic energy enhancing. Chinese Journal of Mechanical Engineering, 30(2):301-309.

[22]LiK, ZhouXX, ZhengHY, et al., 2022. Achieving full forward flow of valveless piezoelectric micropump used for micro analysis system. Actuators, 11(8):218.

[23]LiL, LuJF, FangH, et al., 2020. Lattice Boltzmann method for fluid-thermal systems: status, hotspots, trends and outlook. IEEE Access, 8:27649-27675.

[24]LiL, TanDP, YinZC, et al., 2021a. Investigation on the multiphase vortex and its fluid-solid vibration characters for sustainability production. Renewable Energy, 175:887-909.

[25]LiL, TanDP, WangT, et al., 2021b. Multiphase coupling mechanism of free surface vortex and the vibration-based sensing method. Energy, 216:119136.

[26]LiL, YangYS, XuWX, et al., 2022. Advances in the multiphase vortex-induced vibration detection method and its vital technology for sustainable industrial production. Applied Sciences, 12(17):8538.

[27]LiL, TanYF, XuWX, et al., 2023a. Fluid-induced transport dynamics and vibration patterns of multiphase vortex in the critical transition states. International Journal of Mechanical Sciences, 252:108376.

[28]LiL, XuWX, TanYF, et al., 2023b. Fluid-induced vibration evolution mechanism of multiphase free sink vortex and the multi-source vibration sensing method. Mechanical Systems and Signal Processing, 189:110058.

[29]LiL, LuB, XuWX, et al., 2023c. Mechanism of multiphase coupling transport evolution of free sink vortex. Acta Physica Sinica, 72(3):034702.

[30]LiL, GuZH, XuWX, et al., 2023d. Mixing mass transfer mechanism and dynamic control of gas-liquid-solid multiphase flow based on VOF-DEM coupling. Energy, 272:127015.

[31]LiL, LiQH, NiYS, et al., 2024a. Critical penetrating vibration evolution behaviors of the gas-liquid coupled vortex flow. Energy, 292:130236.

[32]LiL, LuB, XuWX, et al., 2024b. Dynamic behaviors of multiphase vortex-induced vibration for hydropower energy conversion. Energy, 308:132897.

[33]LiL, XuP, XuWX, et al., 2024c. Multi-field coupling vibration patterns of the multiphase sink vortex and distortion recognition method. Mechanical Systems and Signal Processing, 219:111624.

[34]LiL, XuP, LiQH, et al., 2025a. A coupled LBM-LES-DEM particle flow modeling for microfluidic chip and ultrasonic-based particle aggregation control method. Applied Mathematical Modelling, 143:116025.

[35]LiL, XuP, LiQH, YinZC, et al., 2025b. Multi-field coupling particle flow dynamic behaviors of the microreactor and ultrasonic control method. Powder Technology, 454:120731.

[36]LiQH, XuP, LiL, et al., 2024. Investigation on the lubrication heat transfer mechanism of the multilevel gearbox by the lattice Boltzmann method. Processes, 12(2):381.

[37]LiZ, WangCY, LiL, et al., 2024. Numerical investigation of mesoscale multiphase mass transport mechanism in fibrous porous media. Engineering Applications of Computational Fluid Mechanics, 18(1):2363246.

[38]LiZA, GeJQ, LiX, et al., 2024. Numerical and experimental study on cavitation enhancement of ultrasonic coupled abrasive jet polishing. The International Journal of Advanced Manufacturing Technology, 131(12):5769-5786.

[39]LiZH, ZhengX, 2014. The problems and progress in the experimental study of micro/nano-scale flow. Journal of Experiments in Fluid Mechanics, 28(3):1-11 (in Chinese).

[40]LinH, MaM, QiH, et al., 2025a. 3D-printed photocatalysts for revolutionizing catalytic conversion of solar to chemical energy. Progress in Materials Science, 151:101427.

[41]LinH, ShenQT, MaM, et al., 2025b. 3D printing of porous ceramics for enhanced thermal insulation properties. Advanced Science, 12(7):2412554.

[42]LiuXH, ZhaoCY, SuGS, et al., 2024. Enhanced fabrication of conical array via two-stage through mask electrochemical machining process. International Journal of Electrochemical Science, 19:100614.

[43]LuJF, WangT, LiL, et al., 2020. Dynamic characteristics and wall effects of bubble bursting in gas-liquid-solid three-phase particle flow. Processes, 8(7):760.

[44]MaYG, LiuCB, CaoSY, et al., 2023. Microfluidics for diagnosis and treatment of cardiovascular disease. Journal of Materials Chemistry B, 11(3):546-559.

[45]MofakhamAA, AhmadiG, 2020. On random walk models for simulation of particle-laden turbulent flows. International Journal of Multiphase Flow, 122:103157.

[46]NakamuraT, KawaiM, SatoY, et al., 2020. The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution. Molecular Pharmaceutics, 17(3):944-953.

[47]O’NeillLE, MudawarI, 2020. Review of two-phase flow instabilities in macro- and micro-channel systems. International Journal of Heat and Mass Transfer, 157:119738.

[48]PainulyM, SinghRP, TrehanR, 2023. Electrochemical machining and allied processes: a comprehensive review. Journal of Solid State Electrochemistry, 27(12):3189-3256.

[49]PengYF, ShenBY, WangZZ, et al., 2021. Review on polishing technology of small-scale aspheric optics. The International Journal of Advanced Manufacturing Technology, 115(4):965-987.

[50]QiH, QinSK, ChengZC, et al., 2021. Towards understanding performance enhancing mechanism of micro-holes on K9 glasses using ultrasonic vibration-assisted abrasive slurry jet. Journal of Manufacturing Processes, 64:585-593.

[51]RamshaniZ, ZhangCG, RichardsK, et al., 2019. Extracellular vesicle microRNA quantification from plasma using an integrated microfluidic device. Communications Biology, 2:189.

[52]ShanJ, GuoLH, RanPH, et al., 2022. Implantable double-layer pump chamber piezoelectric valveless micropump with adjustable flow rate function. Journal of Micromechanics and Microengineering, 32(10):105002.

[53]ShanuA, SharmaP, DixitP, 2024. Micromachining of alumina ceramic for microsystems applications: a systematic review, challenges and future opportunities. Materials and Manufacturing Processes, 39(7):892-924.

[54]SheikholeslamiM, JafaryarM, LiZX, 2018. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. International Journal of Heat and Mass Transfer, 124:980-989.

[55]ShinYC, WuBX, LeiST, et al., 2020. Overview of laser applications in manufacturing and materials processing in recent years. Journal of Manufacturing Science and Engineering, 142(11):110818.

[56]SubramaniK, VasudevanA, KarthikK, et al., 2022. Insights of abrasive water jet polishing process characteristics and its advancements. Materials Today: Proceedings, 52:1113-1120.

[57]SunXM, DongX, WangKD, et al., 2024. Femtosecond laser processing of controlled tapered micro-holes based on dynamic control of relative attitude. Optics & Laser Technology, 170:110201.

[58]TadakiD, YamauraD, ArakiS, et al., 2017. Mechanically stable solvent-free lipid bilayers in nano- and micro-tapered apertures for reconstitution of cell-free synthesized hERG channels. Scientific Reports, 7(1):17736.

[59]TanDP, LiL, ZhuYL, et al., 2019. Critical penetration condition and Ekman suction-extraction mechanism of a sink vortex. Journal of Zhejiang University-SCIENCE A, 20(1):61-72.

[60]TanDP, LiL, YinZC, et al., 2020. Ekman boundary layer mass transfer mechanism of free sink vortex. International Journal of Heat and Mass Transfer, 150:119250.

[61]TanYF, NiYS, XuWX, et al., 2023. Key technologies and development trends of the soft abrasive flow finishing method. Journal of Zhejiang University-SCIENCE A, 24(12):1043-1064.

[62]TanYF, NiYS, WuJF, et al., 2024. Machinability evolution of gas-liquid-solid three-phase rotary abrasive flow finishing. The International Journal of Advanced Manufacturing Technology, 131(5-6):2145-2164.

[63]TarodiyaR, LevyA, 2021. Surface erosion due to particle-surface interactions–a review. Powder Technology, 387:527-559.

[64]TongWJ, LiL, 2024. Experimental research of ultrasonic cavitation evolution mechanism and model optimization of RUREMM on cylindrical surface. Processes, 12(5):884.

[65]TurkyilmazogluM, AlofiAS, 2024. Liquid vortex formation in a swirling container considering fractional time derivative of Caputo. Fractal and Fractional, 8(4):231.

[66]WangCY, LiZ, XuP, et al., 2025. Collision modeling approach and transient response mechanism of ring-ribbed cylindric shells for underwater vehicles. Applied Mathematical Modelling, 141:115923.

[67]WangT, WangCY, YinYX, et al., 2023. Analytical approach for nonlinear vibration response of the thin cylindrical shell with a straight crack. Nonlinear Dynamics, 111(12):10957-10980.

[68]WangT, TanDP, HouYQ, et al., 2025. Analytical and experimental investigation of vibration response for the cracked fluid-filled thin cylindrical shell under transport condition. Applied Mathematical Modelling, 142:115969.

[69]WuJF, LiL, YinZC, et al., 2024a. Mass transfer mechanism of multiphase shear flows and interphase optimization solving method. Energy, 292:130475.

[70]WuJF, XuP, LiL, et al., 2024b. Multiphase dynamic interfaces and abrasive transport dynamics for abrasive flow machining in shear thickening transition states. Powder Technology, 446:120150.

[71]XiaoH, DaiYF, DuanJ, et al., 2021. Material removal and surface evolution of single crystal silicon during ion beam polishing. Applied Surface Science, 544:148954.

[72]XuP, LiQH, WangCY, et al., 2025. Interlayer healing mechanism of multipath deposition 3D printing models and interlayer strength regulation method. Journal of Manufacturing Processes, 141:1031-1047.

[73]XuWX, XuP, YangY, et al., 2025. The utilization and advancement of laser ultrasound testing in the assessment of aerospace composite characteristics: a review. Chinese Journal of Aeronautics, 38(12):103789.

[74]YanQ, FanXH, LiL, et al., 2024. Investigations of the mass transfer and flow field disturbance regulation of the gas-liquid-solid flow of hydropower stations. Journal of Marine Science and Engineering, 12(1):84.

[75]YanQF, SunWT, ZhangL, et al., 2021. Effects of vibration characteristics on the atomization performance in the medical piezoelectric atomization device induced by intra-hole fluctuation. Chinese Journal of Mechanical Engineering, 34(1):123.

[76]YangX, ZhangZY, ZhangTC, et al., 2024. Multi-build orientation effects on microstructural evolution and mechanical behavior of truly as-built selective laser melting Ti6Al4V alloys. Journal of Materials Research and Technology, 30:3967-3976.

[77]YinZC, LuJF, LiL, et al., 2020. Optimized scheme for accelerating the slagging reaction and slag–metal–gas emulsification in a basic oxygen furnace. Applied Sciences, 10(15):5101.

[78]YinZC, NiYS, LiL, et al., 2024. Numerical modeling and experimental investigation of a two-phase sink vortex and its fluid-solid vibration characteristics. Journal of Zhejiang University-SCIENCE A, 25(1):47-62.

[79]ZhangCX, XuZY, ZhangXY, et al., 2020. Surface integrity of holes machined by electrochemical discharge drilling method. CIRP Journal of Manufacturing Science and Technology, 31:643-651.

[80]ZhangF, HuangX, ChenBC, et al., 2022. Research on the machinability of micro-tapered hole group in piezoelectric atomizer and the improvement method. Sensors, 22(20):7891.

[81]ZhangHS, TanDP, XuSC, et al., 2024. Investigation of crack propagation and failure of liquid-filled cylindrical shells damaged in high-pressure environments. Journal of Marine Science and Engineering, 12(6):921.

[82]ZhangYK, LiZ, LiL, et al., 2025. Deposition mechanism of microscopic impacting droplets on flexible porous substrates. International Journal of Mechanical Sciences, 288:110050.

[83]ZhaoJ, JiangEY, QiH, et al., 2020. A novel polishing method for single-crystal silicon using the cavitation rotary abrasive flow. Precision Engineering, 61:72-81.

[84]ZhengGA, GuZH, XuWX, et al., 2023a. Gravitational surface vortex formation and suppression control: a review from hydrodynamic characteristics. Processes, 11(1):42.

[85]ZhengGA, ShiJL, LiL, et al., 2023b. Fluid-solid coupling-based vibration generation mechanism of the multiphase vortex. Processes, 11(2):568.

[86]ZhengGA, XuP, LiL, et al., 2024. Investigations of the formation mechanism and pressure pulsation characteristics of pipeline gas-liquid slug flows. Journal of Marine Science and Engineering, 12(4):590.

[87]ZhengGA, XuP, LiL, 2025a. Investigate on the fluid dynamics and heat transfer behavior in an automobile gearbox based on the LBM-LES model. Lubricants, 13(3):117.

[88]ZhengGA, XuP, WangT, et al., 2025b. Study on the bubble collapse characteristics and heat transfer mechanism of the microchannel reactor. Processes, 13(1):281.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE