CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-10-18
Cited: 0
Clicked: 843
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-1478-1739
Guanqing LI, Chanyi LU, Miaomiao YIN, Peng WANG, Pengbo ZHANG, Jialiang WU, Wenqiang WANG, Ding WANG, Mengyue WANG, Jiahan LIU, Xinghan LIN, Jian-Xu ZHANG, Zhenshan WANG, Yiqun YU, Yun-Feng ZHANG. Neural substrates for regulating self-grooming behavior in rodents[J]. Journal of Zhejiang University Science B, 2024, 25(10): 841-856.
@article{title="Neural substrates for regulating self-grooming behavior in rodents",
author="Guanqing LI, Chanyi LU, Miaomiao YIN, Peng WANG, Pengbo ZHANG, Jialiang WU, Wenqiang WANG, Ding WANG, Mengyue WANG, Jiahan LIU, Xinghan LIN, Jian-Xu ZHANG, Zhenshan WANG, Yiqun YU, Yun-Feng ZHANG",
journal="Journal of Zhejiang University Science B",
volume="25",
number="10",
pages="841-856",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300562"
}
%0 Journal Article
%T Neural substrates for regulating self-grooming behavior in rodents
%A Guanqing LI
%A Chanyi LU
%A Miaomiao YIN
%A Peng WANG
%A Pengbo ZHANG
%A Jialiang WU
%A Wenqiang WANG
%A Ding WANG
%A Mengyue WANG
%A Jiahan LIU
%A Xinghan LIN
%A Jian-Xu ZHANG
%A Zhenshan WANG
%A Yiqun YU
%A Yun-Feng ZHANG
%J Journal of Zhejiang University SCIENCE B
%V 25
%N 10
%P 841-856
%@ 1673-1581
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300562
TY - JOUR
T1 - Neural substrates for regulating self-grooming behavior in rodents
A1 - Guanqing LI
A1 - Chanyi LU
A1 - Miaomiao YIN
A1 - Peng WANG
A1 - Pengbo ZHANG
A1 - Jialiang WU
A1 - Wenqiang WANG
A1 - Ding WANG
A1 - Mengyue WANG
A1 - Jiahan LIU
A1 - Xinghan LIN
A1 - Jian-Xu ZHANG
A1 - Zhenshan WANG
A1 - Yiqun YU
A1 - Yun-Feng ZHANG
J0 - Journal of Zhejiang University Science B
VL - 25
IS - 10
SP - 841
EP - 856
%@ 1673-1581
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300562
Abstract: grooming, as an evolutionarily conserved repetitive behavior, is common in various animals, including humans, and serves essential functions including, but not limited to, hygiene maintenance, thermoregulation, de-arousal, stress reduction, and social behaviors. In rodents, grooming involves a patterned and sequenced structure, known as the syntactic chain with four phases that comprise repeated stereotyped movements happening in a cephalocaudal progression style, beginning from the nose to the face, to the head, and finally ending with body licking. The context-dependent occurrence of grooming behavior indicates its adaptive significance. This review briefly summarizes the neural substrates responsible for rodent grooming behavior and explores its relevance in rodent models of neuropsychiatric disorders and neurodegenerative diseases with aberrant grooming phenotypes. We further emphasize the utility of rodent grooming as a reliable measure of repetitive behavior in neuropsychiatric models, holding promise for translational psychiatry. Herein, we mainly focus on rodent self-grooming. Allogrooming (grooming being applied on one animal by its conspecifics via licking or carefully nibbling) and heterogrooming (a form of grooming behavior directing towards another animal, which occurs in other contexts, such as maternal, sexual, aggressive, or social behaviors) are not covered due to space constraints.
[1]AdellA, Garcia-MarquezC, ArmarioA, et al., 1988. Chronic stress increases serotonin and noradrenaline in rat brain and sensitizes their responses to a further acute stress. J Neurochem, 50(6):1678-1681.
[2]AguiarMS, BrandãoML, 1994. Conditioned place aversion produced by microinjections of substance P into the periaqueductal gray of rats. Behav Pharmacol, 5(3):369-373.
[3]AhmariSE, DoughertyDD, 2015. Dissecting OCD circuits: from animal models to targeted treatments. Depress Anxiety, 32(8):550-562.
[4]AhmariSE, SpellmanT, DouglassNL, et al., 2013. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science, 340(6137):1234-1239.
[5]AldridgeJW, 2005. Grooming. In: Whishaw IQ, Kolb B (Eds.), The Behaviour of the Laboratory Rat: A Handbook with Tests. MIT Press, Cambridge, p.141-149.
[6]AldridgeJW, BerridgeKC, 1998. Coding of serial order by neostriatal neurons: a “natural action” approach to movement sequence. J Neurosci, 18(7):2777-2787.
[7]AldridgeJW, BerridgeKC, HermanM, et al., 1993. Neuronal coding of serial order: syntax of grooming in the neostriatum. Psychol Sci, 4(6):391-395.
[8]AldridgeJW, BerridgeKC, RosenAR, 2004. Basal ganglia neural mechanisms of natural movement sequences. Can J Physiol Pharmacol, 82(8-9):732-739.
[9]AlòR, AvolioE, MeleM, et al., 2015. Central amygdalar nucleus treated with orexin neuropeptides evoke differing feeding and grooming responses in the hamster. J Neurol Sci, 351(1-2):46-51.
[10]American Psychiatric Association, 2013. Diagnostic and Statistical Manual of Mental Disorders, 5th Ed. American Psychiatric Publishing, Washington, USA.
[11]AmodeoDA, YiJL, SweeneyJA, et al., 2014. Oxotremorine treatment reduces repetitive behaviors in BTBR T+ tf/J mice. Front Synaptic Neurosci, 6:17.
[12]AndréVM, CepedaC, FisherYE, et al., 2011. Differential electrophysiological changes in striatal output neurons in Huntington’s disease. J Neurosci, 31(4):1170-1182.
[13]AnggraeniS, TriesayuningtyasDC, EndaryantoA, et al., 2023. Correlation between grooming and scratching behavior in BALB/c mice related to itch sensation caused by house dust mite allergen. J Pakistan Assoc Dermatol, 33(2):579-586.
[14]BakshiVP, NewmanSM, Smith-RoeS, et al., 2007. Stimulation of lateral septum CRF2 receptors promotes anorexia and stress-like behaviors: functional homology to CRF1 receptors in basolateral amygdala. J Neurosci, 27(39):10568-10577.
[15]BerntsonGG, JangJF, RoncaAE, 1988. Brainstem systems and grooming behaviors. Ann N Y Acad Sci, 525(1):350-362.
[16]BerridgeKC, 1989. Progressive degradation of serial grooming chains by descending decerebration. Behav Brain Res, 33(3):241-253.
[17]BerridgeKC, WhishawIQ, 1992. Cortex, striatum and cerebellum: control of serial order in a grooming sequence. Exp Brain Res, 90(2):275-290.
[18]BerridgeKC, AldridgeJW, 2000. Super-stereotypy II: enhancement of a complex movement sequence by intraventricular dopamine D1 agonists. Synapse, 37(3):205-215. https://doi.org/10.1002/1098-2396(20000901)37:3<205::AID-SYN4>3.0.CO;2-A
[19]BerridgeKC, FentressJC, ParrH, 1987. Natural syntax rules control action sequence of rats. Behav Brain Res, 23(1):59-68.
[20]BerridgeKC, AldridgeJW, HouchardKR, et al., 2005. Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette’s. BMC Biol, 3:4.
[21]BollesRC, 1960. Grooming behavior in the rat. J Comp Physiol Psychol, 53(3):306-310.
[22]BrodkinJ, FrankD, GrippoR, et al., 2014. Validation and implementation of a novel high-throughput behavioral phenotyping instrument for mice. J Neurosci Methods, 224:48-57.
[23]Bubeníková-ValesováV, BalcarVJ, TejkalováH, et al., 2006. Neonatal administration of N-acetyl-L-aspartyl-L-glutamate induces early neurodegeneration in hippocampus and alters behaviour in young adult rats. Neurochem Int, 48(6-7):515-522.
[24]BurguièreE, MonteiroP, FengGP, et al., 2013. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science, 340(6137):1243-1246.
[25]BurguièreE, MonteiroP, MalletL, et al., 2015. Striatal circuits, habits, and implications for obsessive-compulsive disorder. Curr Opin Neurobiol, 30:59-65.
[26]CarobrezAP, BertoglioLJ, 2005. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev, 29(8):1193-1205.
[27]CentonzeD, RossiS, MercaldoV, et al., 2008. Abnormal striatal GABA transmission in the mouse model for the fragile X syndrome. Biol Psychiatry, 63(10):963-973.
[28]ChaoHT, ChenHM, SamacoRC, et al., 2010. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature, 468(7321):263-269.
[29]Cohen-MansfieldJ, JensenB, 2007. Dressing and grooming: preferences of community-dwelling older adults. J Gerontol Nurs, 33(2):31-39.
[30]CormierHC, Della-MaggioreV, KaratsoreosIN, et al., 2015. Suprachiasmatic vasopressin and the circadian regulation of voluntary locomotor behavior. Eur J Neurosci, 41(1):79-88.
[31]CromwellHC, BerridgeKC, 1996. Implementation of action sequences by a neostriatal site: a lesion mapping study of grooming syntax. J Neurosci, 16(10):3444-3458.
[32]DunnAJ, 1988. Studies on the neurochemical mechanisms and significance of ACTH-induced grooming. Ann N Y Acad Sci, 525(1):150-168.
[33]DunnAJ, GreenEJ, IsaacsonRL, 1979. Intracerebral adrenocorticotropic hormone mediates novelty-induced grooming in the rat. Science, 203(4377):281-283.
[34]DunnAJ, BerridgeCW, LaiYI, et al., 1987. CRF-induced excessive grooming behavior in rats and mice. Peptides, 8(5):841-844.
[35]EstanislauC, Díaz-MoránS, CañeteT, et al., 2013. Context-dependent differences in grooming behavior among the NIH heterogeneous stock and the Roman high- and low-avoidance rats. Neurosci Res, 77(4):187-201.
[36]FentressJC, 1968a. Interrupted ongoing behaviour in two species of vole (Microtus agrestis and Clethrionomys britannicus). I. Response as a function of preceding activity and the context of an apparently ‘irrelevant’ motor pattern. Anim Behav, 16(1):135-153.
[37]FentressJC, 1968b. Interrupted ongoing behaviour in two species of vole (Microtus agrestis and Clethrionomys britannicus). II. Extended analysis of motivational variables underlying fleeing and grooming behaviour. Anim Behav, 16(1):154-167.
[38]FerkinMH, LeonardST, 2010. Self-grooming as a form of olfactory communication in meadow voles and prairie voles (Microtus spp.). In: Kalueff AV, la Porte JL, Bergner CL (Eds.), Neurobiology of Grooming Behavior. Cambridge University Press, Cambridge, p.19-45.
[39]FeusnerJD, HembacherE, PhillipsKA, 2009. The mouse who couldn’t stop washing: pathologic grooming in animals and humans. CNS Spectr, 14(9):503-513.
[40]FileSE, MabbuttPS, WalkerJH, 1988. Comparison of adaptive responses in familiar and novel environments: modulatory factors. Ann N Y Acad Sci, 525(1):69-79.
[41]GaoZR, ChenWZ, LiuMZ, et al., 2019. Tac1-expressing neurons in the periaqueductal gray facilitate the itch-scratching cycle via descending regulation. Neuron, 101(1):45-59.e9.
[42]GargiuloPA, DonosoAO, 1989. Luteinizing hormone releasing hormone (LHRH) in the periaqueductal gray substance increases some subcategories of grooming behavior in male rats. Pharmacol Biochem Behav, 32(4):853-856.
[43]GlynnD, DrewCJ, ReimK, et al., 2005. Profound ataxia in complexin I knockout mice masks a complex phenotype that includes exploratory and habituation deficits. Hum Mol Genet, 14(16):2369-2385.
[44]GolaniI, FentressJC, 1985. Early ontogeny of face grooming in mice. Dev Psychobiol, 18(6):529-544.
[45]GraybielAM, 2008. Habits, rituals, and the evaluative brain. Annu Rev Neurosci, 31:359-387.
[46]GraybielAM, SakaE, 2002. A genetic basis for obsessive grooming. Neuron, 33(1):1-2.
[47]GraybielAM, GraftonST, 2015. The striatum: where skills and habits meet. Cold Spring Harb Perspect Biol, 7(8):a021691.
[48]HarrimanAE, ThiessenDD, 1985. Harderian letdown in male mongolian gerbils (Meriones unguiculatus) contributes to proceptive behavior. Horm Behav, 19(2):213-219.
[49]HeidemanDAM, van BeusechemVW, BloemenaE, et al., 2004. Suppression of tumor growth, invasion and angiogenesis of human gastric cancer by adenovirus-mediated expression of NK4. J Gene Med, 6(3):317-327.
[50]HellriegelET, D'MelloAP, 1997. The effect of acute, chronic and chronic intermittent stress on the central noradrenergic system. Pharmacol Biochem Behav, 57(1-2):207-214.
[51]HickeyMA, ReynoldsGP, MortonAJ, 2002. The role of dopamine in motor symptoms in the R6/2 transgenic mouse model of Huntington’s disease. J Neurochem, 81(1):46-59.
[52]HillRA, McInnesKJ, GongECH, et al., 2007. Estrogen deficient male mice develop compulsive behavior. Biol Psychiat, 61(3):359-366.
[53]HobbsNJ, FingerAA, FerkinMH, 2012. Effects of food availability on proceptivity: a test of the reproduction at all costs and metabolic fuels hypotheses. Behav Process, 91(2):192-197.
[54]HombergJR, van den AkkerM, RaasøHS, et al., 2002. Enhanced motivation to self-administer cocaine is predicted by self-grooming behaviour and relates to dopamine release in the rat medial prefrontal cortex and amygdala. Eur J Neurosci, 15(9):1542-1550.
[55]HongWZ, KimDW, AndersonDJ, 2014. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell, 158(6):1348-1361.
[56]Iu MakarchukM, 1999. An electrophysiological evaluation of the role of the olfactory analyzer in brain integrative activity. Fiziol Zh (1994), 45(4):77-83 (in Ukrainian).
[57]Iu MakarchukM, ZymaIH, 2002. Effect of anosmia on sex-related differences in conditioned avoidance in rats. Fiziol Zh (1994), 48(3):9-15 (in Ukrainian).
[58]JaeggiAV, KramerKL, HamesR, et al., 2017. Human grooming in comparative perspective: people in six small-scale societies groom less but socialize just as much as expected for a typical primate. Am J Phys Anthropol, 162(4):810-816.
[59]JankordR, HermanJP, 2008. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci, 1148(1):64-73.
[60]JiaT, ChenJ, WangYD, et al., 2023. A subthalamo-parabrachial glutamatergic pathway is involved in stress-induced self-grooming in mice. Acta Pharmacol Sin, 44(11):2169-2183.
[61]JohnsonCS, HongWZ, MicevychPE, 2021. Posterodorsal medial amygdala regulation of female social behavior: GABA versus glutamate projections. J Neurosci, 41(42):8790-8800.
[62]KalueffAV, TuohimaaP, 2004. Grooming analysis algorithm for neurobehavioural stress research. Brain Res Protoc, 13(3):151-158.
[63]KalueffAV, TuohimaaP, 2005a. Contrasting grooming phenotypes in three mouse strains markedly different in anxiety and activity (129S1, BALB/c and NMRI). Behav Brain Res, 160(1):1-10.
[64]KalueffAV, TuohimaaP, 2005b. The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. J Neurosci Methods, 143(2):169-177.
[65]KalueffAV, TuohimaaP, 2005c. Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs. Eur J Pharmacol, 508(1-3):147-153.
[66]KalueffAV, AldridgeJW, LaPorteJL, et al., 2007. Analyzing grooming microstructure in neurobehavioral experiments. Nat Protoc, 2(10):2538-2544.
[67]KalueffAV, StewartAM, SongC, et al., 2016. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci, 17(1):45-59.
[68]KarigoT, DeutschD, 2022. Flexibility of neural circuits regulating mating behaviors in mice and flies. Front Neural Circuits, 16:949781.
[69]KellyE, MengFT, FujitaH, et al., 2020. Regulation of autism-relevant behaviors by cerebellar-prefrontal cortical circuits. Nat Neurosci, 23(9):1102-1110.
[70]KinleinSA, PhillipsDJ, KellerCR, et al., 2019. Role of corticosterone in altered neurobehavioral responses to acute stress in a model of compromised hypothalamic-pituitary-adrenal axis function. Psychoneuroendocrinology, 102:248-255.
[71]KrukMR, WestphalKGC, van ErpAMM, et al., 1998. The hypothalamus: cross-roads of endocrine and behavioural regulation in grooming and aggression. Neurosci Biobehav Rev, 23(2):163-177.
[72]KyrkouliSE, StanleyBG, LeibowitzSF, 1987. Bombesin-induced anorexia: sites of action in the rat brain. Peptides, 8(2):237-241.
[73]LeonardST, Alizadeh-NaderiR, StokesK, et al., 2005. The role of prolactin and testosterone in mediating seasonal differences in the self-grooming behavior of male meadow voles, Microtus pennsylvanicus. Physiol Behav, 85(4):461-468.
[74]LiuSF, CrawfordJ, TaoF, 2023. Assessing orofacial pain behaviors in animal models: a review. Brain Sci, 13(3):390.
[75]MangieriLR, LuYG, XuYZ, et al., 2018. A neural basis for antagonistic control of feeding and compulsive behaviors. Nat Commun, 9:52.
[76]McGloneF, WalkerS, AckerleyR, 2016. Affective touch and human grooming behaviours: feeling good and looking good. In: Olausson H, Wessberg J, Morrison I, et al. (Eds.), Affective Touch and the Neurophysiology of CT Afferents. Springer, New York, USA, p.265-282.
[77]MehtaMV, GandalMJ, SiegelSJ, 2011. mGluR5-antagonist mediated reversal of elevated stereotyped, repetitive behaviors in the VPA model of autism. PLoS ONE, 6(10):e26077.
[78]MeixiongJ, DongXZ, 2017. Mas-related G protein-coupled receptors and the biology of itch sensation. Annu Rev Genet, 51:103-121.
[79]MejiasR, ChiuSL, HanM, et al., 2019. Purkinje cell-specific Grip1/2 knockout mice show increased repetitive self-grooming and enhanced mGluR5 signaling in cerebellum. Neurobiol Dis, 132:104602.
[80]Meyer-LuehmannM, ThompsonJF, BerridgeKC, et al., 2002. Substantia nigra pars reticulata neurons code initiation of a serial pattern: implications for natural action sequences and sequential disorders. Eur J Neurosci, 16(8):1599-1608.
[81]MonteiroP, FengGP, 2016. Learning from animal models of obsessive-compulsive disorder. Biol Psychiatry, 79(1):7-16.
[82]MooreCL, 1986. A hormonal basis for sex differences in the self-grooming of rats. Horm Behav, 20(2):155-165.
[83]MuMD, GengHY, RongKL, et al., 2020. A limbic circuitry involved in emotional stress-induced grooming. Nat Commun, 11:2261.
[84]MulJD, SpruijtBM, BrakkeeJH, et al., 2013. Melanocortin MC4 receptor-mediated feeding and grooming in rodents. Eur J Pharmacol, 719(1-3):192-201.
[85]ParolariL, SchneebergerM, HeintzN, et al., 2021. Functional analysis of distinct populations of subthalamic nucleus neurons on Parkinson’s disease and OCD-like behaviors in mice. Mol Psychiatry, 26(11):7029-7046.
[86]PaumierKL, Sukoff RizzoSJ, BergerZ, et al., 2013. Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinson’s disease. PLoS ONE, 8(8):e70274.
[87]PeçaJ, FelicianoC, TingJT, et al., 2011. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 472(7344):437-442.
[88]PetrelliF, ZehnderT, LaugerayA, et al., 2023. Disruption of astrocyte-dependent dopamine control in the developing medial prefrontal cortex leads to excessive grooming in mice. Biol Psychiatry, 93(11):966-975.
[89]PiatoÂL, DetanicoBC, JesusJF, et al., 2008. Effects of Marapuama in the chronic mild stress model: further indication of antidepressant properties. J Ethnopharmacol, 118(2):300-304.
[90]PinhalCM, van den BoomBJG, Santana-KragelundF, et al., 2018. Differential effects of deep brain stimulation of the internal capsule and the striatum on excessive grooming in Sapap3 mutant mice. Biol Psychiatry, 84(12):917-925.
[91]ProkopP, FančovičováJ, FedorP, 2014. Parasites enhance self-grooming behaviour and information retention in humans. Behav Processes, 107:42-46.
[92]RapanelliM, FrickL, BitoH, et al., 2017. Histamine modulation of the basal ganglia circuitry in the development of pathological grooming. Proc Natl Acad Sci USA, 114(25):6599-6604.
[93]Reis-SilvaTM, SandiniTM, CalefiAS, et al., 2019. Stress resilience evidenced by grooming behaviour and dopamine levels in male mice selected for high and low immobility using the tail suspension test. Eur J Neurosci, 50(6):2942-2954.
[94]RodgersRJ, CaoBJ, DalviA, et al., 1997. Animal models of anxiety: an ethological perspective. Braz J Med Biol Res, 30(3):289-304.
[95]Rodríguez EchandíaEL, BroitmanST, FóscoloMR, 1987. Effect of the chronic ingestion of chlorimipramine and desipramine on the hole board response to acute stresses in male rats. Pharmacol Biochem Behav, 26(2):207-210.
[96]RoelingTAP, VeeningJG, PetersJPW, et al., 1993. Efferent connections of the hypothalamic “grooming area” in the rat. Neuroscience, 56(1):199-225.
[97]Rojas-CarvajalM, BrenesJC, 2020. Acute stress differentially affects grooming subtypes and ultrasonic vocalisations in the open-field and home-cage test in rats. Behav Processes, 176:104140.
[98]Rojas-CarvajalM, LeandroR, BrenesJC, 2023. Distinct acute stressors exert an antagonistic effect on complex grooming during novelty habituation in rats. Behav Process, 212:104931.
[99]RothA, KyzarEJ, CachatJ, et al., 2013. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases. Prog Neuropsychopharmacol Biol Psychiatry, 40:312-325.
[100]RuderL, SchinaR, KanodiaH, et al., 2021. A functional map for diverse forelimb actions within brainstem circuitry. Nature, 590(7846):445-450.
[101]SantarelliL, SaxeM, GrossC, et al., 2003. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301(5634):805-809.
[102]ScattoniML, ValanzanoA, PopoliP, et al., 2004. Progressive behavioural changes in the spatial open-field in the quinolinic acid rat model of Huntington’s disease. Behav Brain Res, 152(2):375-383.
[103]SchmeisserMJ, 2015. Translational neurobiology in Shank mutant mice-model systems for neuropsychiatric disorders. Ann Anat, 200:115-117.
[104]SchmeisserMJ, EyE, WegenerS, et al., 2012. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature, 486(7402):256-260.
[105]ScruggsBA, BowlesAC, ZhangXJ, et al., 2013. High-throughput screening of stem cell therapy for globoid cell leukodystrophy using automated neurophenotyping of twitcher mice. Behav Brain Res, 236:35-47.
[106]SilvermanJL, ToluSS, BarkanCL, et al., 2010. Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology, 35(4):976-989.
[107]SilvermanJL, SmithDG, Sukoff RizzoSJ, et al., 2012. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med, 4(131):131ra51.
[108]SmolinskyAN, BergnerCL, LaPorteJL, et al., 2009. Analysis of grooming behavior and its utility in studying animal stress, anxiety, and depression. In: Gould TD (Ed.), Mood and Anxiety Related Phenotypes in Mice: Characterization Using Behavioral Tests. Humana Press, Totowa, USA, p.21-36.
[109]SongKY, WongJ, GonzalezL, et al., 2010. Antitumor efficacy of viral therapy using genetically engineered newcastle disease virus [NDV(F3aa)-GFP] for peritoneally disseminated gastric cancer. J Mol Med (Berl), 88(6):589-596.
[110]SpruijtBM, CoolsAR, GispenWH, 1986. The periaqueductal gray: a prerequisite for ACTH-induced excessive grooming. Behav Brain Res, 20(1):19-25.
[111]SpruijtBM, WelbergenP, BrakkeeJ, et al., 1987. Behavioral changes in ACTH-(1-24)-induced excessive grooming in aging rats. Neurobiol Aging, 8(3):265-270.
[112]SpruijtBM, WelbergenP, BrakkeeJ, et al., 1988. An ethological analysis of excessive grooming in young and aged rats. Ann N Y Acad Sci, 525(1):89-100.
[113]SpruijtBM, van HooffJA, GispenWH, 1992. Ethology and neurobiology of grooming behavior. Physiol Rev, 72(3):825-852.
[114]SteeleAD, JacksonWS, KingOD, et al., 2007. The power of automated high-resolution behavior analysis revealed by its application to mouse models of Huntington’s and prion diseases. Proc Natl Acad Sci USA, 104(6):1983-1988.
[115]SunJJ, YuanY, WuXH, et al., 2022. Excitatory SST neurons in the medial paralemniscal nucleus control repetitive self-grooming and encode reward. Neuron, 110(20):3356-3373.e8.
[116]SungurAÖ, VörckelKJ, SchwartingRKW, et al., 2014. Repetitive behaviors in the Shank1 knockout mouse model for autism spectrum disorder: developmental aspects and effects of social context. J Neurosci Methods, 234:92-100.
[117]TaylorJL, RajbhandariAK, BerridgeKC, et al., 2010. Dopamine receptor modulation of repetitive grooming actions in the rat: potential relevance for Tourette syndrome. Brain Res, 1322:92-101.
[118]ThorDH, HarrisonRJ, SchneiderSR, et al., 1988. Sex differences in investigatory and grooming behaviors of laboratory rats (Rattus norvegicus) following exposure to novelty. J Comp Psychol, 102(2):188-192.
[119]TurnerPV, PangDSJ, LofgrenJLS, 2019. A review of pain assessment methods in laboratory rodents. Comp Med, 69(6):451-467.
[120]van ErpAMM, KrukMR, MeelisW, et al., 1994. Effect of environmental stressors on time course, variability and form of self-grooming in the rat: handling, social contact, defeat, novelty, restraint and fur moistening. Behav Brain Res, 65(1):47-55.
[121]VárkonyiD, TörökB, SiposE, et al., 2022. Investigation of anxiety- and depressive-like symptoms in 4- and 8-month-old male triple transgenic mouse models of Alzheimer’s disease. Int J Mol Sci, 23(18):10816.
[122]VidalR, BarbeitoAG, MiravalleL, et al., 2009. Cerebral amyloid angiopathy and parenchymal amyloid deposition in transgenic mice expressing the Danish mutant form of human BRI2. Brain Pathol, 19(1):58-68.
[123]WanYH, AdeKK, CaffallZ, et al., 2014. Circuit-selective striatal synaptic dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder. Biol Psychiatry, 75(8):623-630.
[124]WangB, ZhengY, ShiH, et al., 2017. Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. Genes Brain Behav, 16(2):296-307.
[125]WangD, AnSC, ZhangX, 2008. Prevention of chronic stress-induced depression-like behavior by inducible nitric oxide inhibitor. Neurosci Lett, 433(1):59-64.
[126]WangXM, McCoyPA, RodriguizRM, et al., 2011. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet, 20(15):3093-3108.
[127]WelchJM, LuJ, RodriguizRM, et al., 2007. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature, 448(7156):894-900.
[128]WonH, LeeHR, GeeHY, et al., 2012. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature, 486(7402):261-265.
[129]XieZY, LiDP, ChengXY, et al., 2022. A brain-to-spinal sensorimotor loop for repetitive self-grooming. Neuron, 110(5):874-890.e7.
[130]XuYZ, LuYG, CassidyRM, et al., 2019. Identification of a neurocircuit underlying regulation of feeding by stress-related emotional responses. Nat Commun, 10:3446.
[131]XuYZ, JiangZY, LiHL, et al., 2023. Lateral septum as a melanocortin downstream site in obesity development. Cell Rep, 42(5):112502.
[132]YangM, PerryK, WeberMD, et al., 2011. Social peers rescue autism-relevant sociability deficits in adolescent mice. Autism Res, 4(1):17-27.
[133]YangM, BozdagiO, ScattoniML, et al., 2012. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci, 32(19):6525-6541.
[134]YuXZ, TaylorAMW, NagaiJ, et al., 2018. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron, 99(6):1170-1187.e9.
[135]ZhangK, HillK, LabakS, et al., 2014. Loss of glutamic acid decarboxylase (Gad67) in Gpr88-expressing neurons induces learning and social behavior deficits in mice. Neurosci, 275:238-247.
[136]ZhangYF, Vargas CifuentesL, WrightKN, et al., 2021. Ventral striatal islands of Calleja neurons control grooming in mice. Nat Neurosci, 24(12):1699-1710.
[137]ZhangYF, JankeE, BhattaraiJP, et al., 2022. Self-directed orofacial grooming promotes social attraction in mice via chemosensory communication. iScience, 25(5):104284.
[138]ZhangYF, WuJL, WangYQ, et al., 2023. Ventral striatal islands of Calleja neurons bidirectionally mediate depression-like behaviors in mice. Nat Commun, 14:6887.
Open peer comments: Debate/Discuss/Question/Opinion
<1>