Full Text:   <4123>

CLC number: TP273.1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-01-15

Cited: 5

Clicked: 10916

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.2 P.139-146

http://doi.org/10.1631/jzus.C1300182


Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization


Author(s):  Yong-gang Peng, Jun Wang, Wei Wei

Affiliation(s):  College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   pengyg@zju.edu.cn

Key Words:  Model predictive control, Recurrent neural network, Neurodynamic optimization, Injection molding machine


Yong-gang Peng, Jun Wang, Wei Wei. Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization[J]. Journal of Zhejiang University Science C, 2014, 15(2): 139-146.

@article{title="Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization",
author="Yong-gang Peng, Jun Wang, Wei Wei",
journal="Journal of Zhejiang University Science C",
volume="15",
number="2",
pages="139-146",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300182"
}

%0 Journal Article
%T Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization
%A Yong-gang Peng
%A Jun Wang
%A Wei Wei
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 2
%P 139-146
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300182

TY - JOUR
T1 - Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization
A1 - Yong-gang Peng
A1 - Jun Wang
A1 - Wei Wei
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 2
SP - 139
EP - 146
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300182


Abstract: 
In view of the high energy consumption and low response speed of the traditional hydraulic system for an injection molding machine, a servo motor driven constant pump hydraulic system is designed for a precision injection molding process, which uses a servo motor, a constant pump, and a pressure sensor, instead of a common motor, a constant pump, a pressure proportion valve, and a flow proportion valve. A model predictive control strategy based on neurodynamic optimization is proposed to control this new hydraulic system in the injection molding process. Simulation results showed that this control method has good control precision and quick response.

基于神经动态优化的注塑过程伺服液压系统模型预测控制

研究目的:提出一种注塑过程伺服电机驱动定量泵液压系统,解决注塑过程的节能问题,针对注塑过程液压系统压力流量的耦合、精确控制难题,提出一种基于神经动态优化的模型预测方法,实现注塑过程液压系统的精确闭环控制。
创新方法:由于在线优化的速度和计算能力限制,目前模型预测控制主要应用于控制器性能高、反应过程较慢的大型过程控制系统。本文将基于神经动态优化的模型预测控制应用于注塑成型过程,利用神经动态优化的在线并行优化处理能力,提高了优化速度,使得模型预测控制可以应用于较快响应的动态过程控制。
研究手段:建立了注塑过程伺服驱动定量泵液压系统模型,并将其转化为非线性投影系统形式,然后采用基于神经动态优化的模型预测控制方法对其进行精确控制,解决了快速响应过程的模型预测控制快速在线优化问题,克服了注塑过程中外界的干扰,实现了精确闭环控制。
重要结论:由于神经网络并行处理和分布式计算特点,基于神经动态优化的模型预测控制使得优化速度满足注塑成型过程的精确模型预测控制。模型预测控制可以扩展到一类变化较快对象的控制。

关键词:神经动态优化,注塑成型,模型预测控制,伺服液压系统

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Akesson, B.M., Toivonen, H.T., 2006. A neural network model predictive controller. J. Process Contr., 16(9):937-946.

[2]Draeger, A., Engell, S., Ranke, H., 1995. Model predictive control using neural networks. IEEE Contr. Syst., 15(5):61-66.

[3]Dubay, R., 2002. Self-optimizing MPC of melt temperature in injection moulding. ISA Trans., 41(1):81-94.

[4]Gao, F., Patterson, W.I., Kamal, M.R., 1996. Cavity pressure dynamics and self-tuning control for filling and packing phases of thermoplastics injection molding. Polym. Eng. Sci., 36(9):1272-1285.

[5]Gao, F.R., Yang, Y., Shao, C., 2001. Robust iterative learning control with applications to injection molding process. Chem. Eng. Sci., 56(24):7025-7034.

[6]Hopfield, J.J., Tank, D.W., 1985. “Neural” computation of decisions in optimization problems. Biol. Cybern., 52(3):141-152.

[7]Hu, X.L., Wang, J., 2008. An improved dual neural network for solving a class of quadratic programming problems and its k-winners-take-all application. IEEE Tran. Neur. Networks, 19(12):2022-2031.

[8]Huang, S.N., Tan, K.K., Lee, T.H., 1999a. Predictive control of ram velocity in injection molding. Polym. Plast. Technol. Eng., 38(2):285-303.

[9]Huang, S.N., Tan, K.K., Lee, T.H., 1999b. Adaptive GPC control of melt temperature in injection moulding. ISA Trans., 38(4):361-373.

[10]Huang, S.N., Tan, K.K, Lee, T.H., 2004. Neural-network-based predictive learning control of ram velocity in injection molding. IEEE Trans. Syst. Man Cybern. C, 34(3):363-368.

[11]Kennedy, M.P., Chua, L.O., 1988. Neural networks for nonlinear programming. IEEE Trans. Circ. Syst., 35(5):554-562.

[12]Liao, J.H., Tsai, C.C., Chang, H.C., 1996. Adaptive generalized predictive PI control of injection molding processes. Proc. 4th Int. Conf. on Automation Technology, p.711-718.

[13]Liu, Q.S., Wang, J., 2008. A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming. IEEE Trans. Neur. Networks, 19(4):558-570.

[14]Liu, S.B., Wang, J., 2006. A simplified dual neural network for quadratic programming with its KWTA application. IEEE Trans. Neur. Networks, 17(6):1500-1510.

[15]Mahadevan, R., Doyle, F.J., 2003. Efficient optimization approaches to nonlinear model predictive control. Int. J. Robust Nonl. Contr., 13(3-4):309-329.

[16]Morari, M., Lee, J.H., 1999. Model predictive control: past, present and future. Comput. Chem. Eng., 23(4-5):667-682.

[17]Pan, Y.P., Wang, J., 2009. Model predictive control for nonlinear affine systems based on the simplified dual neural network. IEEE Int. Symp. on Intelligent Control and Control Applications, p.683-688.

[18]Pandelidis, I.O., Agrawal, A.R., 1988. Optimal anticipatory control of ram velocity in injection molding. Polym. Eng. Sci., 28(3):147-156.

[19]Qian, S.J., Badgwell, T.A., 2003. A survey of industrial model predictive control technology. Contr. Eng. Pract., 11(7):733-764.

[20]Rafizadeh, M., Patterson, W.I., Kamal, M.R., 1996. Physically-based model of thermoplastics injection molding for control applications. Int. Polym. Proc., 11(4):352-362.

[21]Tan, K.K., Tang, J.C., 2002. Learning-enhanced PI control of ram velocity in injection molding machines. Eng. Appl. Artif. Intell., 15(1):65-72.

[22]Tan, K.K., Huang, S.N., Jiang, X., 2001. Adaptive control of ram velocity for the injection moulding machine. IEEE Tran. Contr. Syst. Tech., 9(4):663-671.

[23]Tank, D., Hopfield, J.J., 1986. Simple ‘neural’ optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circ. Syst., 33(5):533-541.

[24]Varela, A.E., 2000. Self-tuning pressure control in an injection moulding cavity during filling. Chem. Eng. Res. Des., 78(1):79-86.

[25]Xia, Y., Wang, J., 2001. A dual neural network for kinematic control of redundant robot manipulators. IEEE Trans. Syst. Man Cybern. B, 31(1):147-154.

[26]Yang, Y., Gao, F., 2000. Adaptive control of the filling velocity of thermoplastics injection molding. Contr. Eng. Pract., 8(11):1285-1296.

[27]Zhang, S., Constantinides, A.G., 1992. Lagrange programming neural networks. IEEE Trans. Circ. Syst. II, 39(7):441-452.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE