CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2022-08-26
Cited: 0
Clicked: 2158
Xin TONG. Three-dimensional shape space learning for visual concept construction: challenges and research progress[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(9): 1290-1297.
@article{title="Three-dimensional shape space learning for visual concept construction: challenges and research progress",
author="Xin TONG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="9",
pages="1290-1297",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200318"
}
%0 Journal Article
%T Three-dimensional shape space learning for visual concept construction: challenges and research progress
%A Xin TONG
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 9
%P 1290-1297
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200318
TY - JOUR
T1 - Three-dimensional shape space learning for visual concept construction: challenges and research progress
A1 - Xin TONG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 9
SP - 1290
EP - 1297
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200318
Abstract: Human beings can easily categorize three-dimensional (3D) objects with similar shapes and functions into a set of “visual concepts” and learn “visual knowledge” of the surrounding 3D real world (
[1]Bai S, Bai X, Zhou ZC, et al., 2016. GIFT: a real-time and scalable 3D shape search engine. IEEE Conf on Computer Vision and Pattern Recognition, p.5023-5032.
[2]Cao C, Weng YL, Zhou S, et al., 2014. FaceWareHouse: a 3D facial expression database for visual computing. IEEE Trans Visual Comput Graph, 20(3):413-425.
[3]Chan ER, Monteiro M, Kellnhofer P, et al., 2021. pi-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.5799-5809.
[4]Chen ZQ, Zhang H, 2019. Learning implicit fields for generative shape modeling. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.5932-5941.
[5]Deng Y, Yang JL, Tong X, 2021. Deformed implicit field: modeling 3D shapes with learned dense correspondence. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.10286-10296.
[6]Deng Y, Yang J, Xiang J, et al., 2022. GRAM: generative radiance manifolds for 3D-aware image generation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.10673-10683.
[7]Egger B, Smith WA, Tewari A, 2020. 3D morphable face models past, present, and future. ACM Trans Graph, 39(5):157.
[8]Gadelha M, Maji S, Wang R, 2017. 3D shape induction from 2D views of multiple objects. Int Conf on 3D Vision, p.402-411.
[9]Groueix T, Fisher M, Kim VG, et al., 2018. A Papier-Mache approach to learning 3D surface generation. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.216-224.
[10]Hughes JF, van Dam A, McGuire M, et al., 2013. Computer Graphics: Principles and Practice (3rd Ed.). Addison-Wesley, Upper Saddle River, USA.
[11]Jiang C, Huang J, Tagliasacchi A, et al., 2020. ShapeFlow: learnable deformation flows among 3D shapes. Advances in Neural Information Processing Systems 33, p.9745-9757.
[12]Jin YW, Jiang DQ, Cai M, 2020. 3D reconstruction using deep learning: a survey. Commun Inform Syst, 20(4):389-413.
[13]Li X, Dong Y, Peers P, et al., 2019. Synthesizing 3D shapes from silhouette image collections using multi-projection generative adversarial networks. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.5530-5539.
[14]Liu F, Liu XM, 2020. Learning implicit functions for topology-varying dense 3D shape correspondence. Proc 34th Int Conf on Neural Information Processing Systems, p.4823-4834.
[15]Loper M, Mahmood N, Romero J, et al., 2015. SMPL: a skinned multi-person linear model. ACM Trans Graph, 34(6):248.
[16]Lun ZL, Gadelha M, Kalogerakis E, et al., 2017. 3D shape reconstruction from sketches via multi-view convolutional networks. Proc Int Conf on 3D Vision, p.67-77. http://arxiv.org/abs/1707.06375
[17]Masci J, Boscaini D, Bronstein MM, et al., 2015. Geodesic convolutional neural networks on Riemannian manifolds. Proc IEEE Int Conf on Computer Vision Workshop, p.832-840.
[18]Měch R, Prusinkiewicz P, 1996. Visual models of plants interacting with their environment. Proc 23rd Annual Conf on Computer Graphics and Interactive Techniques, p.397-410.
[19]Mescheder L, Oechsle M, Niemeyer M, et al., 2019. Occupancy networks: learning 3D reconstruction in function space. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.4455-4465.
[20]Mo KC, Zhu SL, Chang AX, et al., 2019. PartNet: a large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.909-918.
[21]Müller P, Wonka P, Haegler S, et al., 2006. Procedural modeling of buildings. ACM SIGGRAPH Papers, p.614-623.
[22]Niu CJ, Li J, Xu K, 2018. Im2Struct: recovering 3D shape structure from a single RGB image. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.4521-4529.
[23]Pan YH, 2019. On visual knowledge. Front Inform Technol Electron Eng, 20(8):1021-1025.
[24]Pan YH, 2021a. Miniaturized five fundamental issues about visual knowledge. Front Inform Technol Electron Eng, 22(5):615-618.
[25]Pan YH, 2021b. On visual understanding. Front Inform Technol Electron Eng, early access.
[26]Park JJ, Florence P, Straub J, et al., 2019. DeepSDF: learning continuous signed distance functions for shape representation. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.165-174.
[27]Paschalidou D, Katharopoulos A, Geiger A, et al., 2021. Neural parts: learning expressive 3D shape abstractions with invertible neural networks. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.3204-3215.
[28]Qi CR, Su H, Mo KC, et al., 2017. PointNet: deep learning on point sets for 3D classification and segmentation. IEEE Conf on Computer Vision and Pattern Recognition, p.77-85.
[29]Riegler G, Ulusoy AO, Geiger A, 2017. OctNet: learning deep 3D representations at high resolutions. IEEE Conf on Computer Vision and Pattern Recognition, p.6620-6629.
[30]Sinha A, Bai J, Ramani K, 2016. Deep learning 3D shape surfaces using geometry images. Proc 14th European Conf on Computer Vision, p.223-240.
[31]Su H, Maji S, Kalogerakis E, et al., 2015. Multi-view convolutional neural networks for 3D shape recognition. IEEE Int Conf on Computer Vision, p.945-953.
[32]Sun CY, Zou QF, Tong X, et al., 2019. Learning adaptive hierarchical cuboid abstractions of 3D shape collections. ACM Trans Graph, 38(6):241.
[33]Tulsiani S, Su H, Guibas LJ, et al., 2017. Learning shape abstractions by assembling volumetric primitives. IEEE Conf on Computer Vision and Pattern Recognition, p.1466-1474.
[34]Wang NY, Zhang YD, Li ZW, et al., 2018. Pixel2Mesh: generating 3D mesh models from single RGB images. Proc 15th European Conf on Computer Vision, p.55-71.
[35]Wang PS, Liu Y, Guo YX, et al., 2017. O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Trans Graph, 36(4):72.
[36]Wang PS, Liu Y, Tong X, 2022. Dual octree graph networks for learning adaptive volumetric shape representations. ACM Trans Graph, 41(4):103.
[37]Wen C, Zhang YD, Li ZW, et al., 2019. Pixel2Mesh++: multi-view 3D mesh generation via deformation. IEEE/CVF Int Conf on Computer Vision, p.1042-1051.
[38]Wu ZR, Song SR, Khosla A, et al., 2015. 3D ShapeNets: a deep representation for volumetric shapes. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.1912-1920.
[39]Xiao YP, Lai YK, Zhang FL, et al., 2020. A survey on deep geometry learning: from a representation perspective. Comput Visual Med, 6(2):113-133.
[40]Yang J, Mo KC, Lai YK, et al., 2023. DSG-Net: learning disentangled structure and geometry for 3D shape generation. ACM Trans Graph, 42(1):1.
[41]Yang KZ, Chen XJ, 2021. Unsupervised learning for cuboid shape abstraction via joint segmentation from point clouds. ACM Trans Graph, 40(4):152.
[42]Yu FG, Liu K, Zhang Y, et al., 2019. PartNet: a recursive part decomposition network for fine-grained and hierarchical shape segmentation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.9483-9492.
[43]Yu LQ, Li XZ, Fu CW, et al., 2018. PU-Net: point cloud upsampling network. IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.2790-2799.
[44]Zheng XY, Liu Y, Wang PS, et al., 2022. SDF-StyleGAN: implicit SDF-based StyleGAN for 3D shape generation. https://arxiv.org/abs/2206.12055
[45]Zheng ZR, Yu T, Dai QH, et al., 2021. Deep implicit templates for 3D shape representation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.1429-1439.
[46]Zuffi S, Kanazawa A, Jacobs DW, et al., 2017. 3D Menagerie: modeling the 3D shape and pose of animals. IEEE Conf on Computer Vision and Pattern Recognition, p.5524-5532.
Open peer comments: Debate/Discuss/Question/Opinion
<1>