Full Text:   <634>

Summary:  <74>

CLC number: TM13;TP212

On-line Access: 2025-06-04

Received: 2024-08-10

Revision Accepted: 2025-05-04

Crosschecked: 2025-09-04

Cited: 0

Clicked: 520

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yi LIU

https://orcid.org/0000-0002-2558-444X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.8 P.1461-1472

http://doi.org/10.1631/FITEE.2400700


Design of omnidirectional Rydberg atomic sensors loaded with electric field enhancement structure using characteristic mode analysis


Author(s):  Zhenke DING, Yi LIU, Bo WU, Kai YANG, Ruibing RAN, Yi LIN, Yunqi FU

Affiliation(s):  College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

Corresponding email(s):   yi_liu@nudt.edu.cn

Key Words:  Rydberg atomic sensor, Characteristic mode, Electric field enhancement structure


Zhenke DING, Yi LIU, Bo WU, Kai YANG, Ruibing RAN, Yi LIN, Yunqi FU. Design of omnidirectional Rydberg atomic sensors loaded with electric field enhancement structure using characteristic mode analysis[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(8): 1461-1472.

@article{title="Design of omnidirectional Rydberg atomic sensors loaded with electric field enhancement structure using characteristic mode analysis",
author="Zhenke DING, Yi LIU, Bo WU, Kai YANG, Ruibing RAN, Yi LIN, Yunqi FU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="8",
pages="1461-1472",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400700"
}

%0 Journal Article
%T Design of omnidirectional Rydberg atomic sensors loaded with electric field enhancement structure using characteristic mode analysis
%A Zhenke DING
%A Yi LIU
%A Bo WU
%A Kai YANG
%A Ruibing RAN
%A Yi LIN
%A Yunqi FU
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 8
%P 1461-1472
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400700

TY - JOUR
T1 - Design of omnidirectional Rydberg atomic sensors loaded with electric field enhancement structure using characteristic mode analysis
A1 - Zhenke DING
A1 - Yi LIU
A1 - Bo WU
A1 - Kai YANG
A1 - Ruibing RAN
A1 - Yi LIN
A1 - Yunqi FU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 8
SP - 1461
EP - 1472
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400700


Abstract: 
The integration of electric field enhancement structures (EFESs) with rydberg atomic sensors (RASs) has garnered considerable interest due to their potential to enhance detection sensitivity in quantum measurement systems. Despite this, there is a dearth of research on the directional response of EFES, and the analysis of the three-dimensional (3D) patterns of RAS remains a formidable challenge. RASs are employed in non-destructive measurement techniques, and are responsive to electric fields, primarily serving as reception devices. However, analyzing their reception patterns is a complex task that requires a sophisticated approach. To address this, we adopt characteristic mode (CM) analysis to illustrate the omnidirectional performance of RAS. According to the CM theory, the reception pattern can be calculated by a series of modal currents and their corresponding coefficients. The analytical representation of these coefficients negates the need for time-consuming full-wave (FW) numerical simulations, which are typically required to generate EFES patterns due to the necessity of scanning numerous angle parameters. This approach significantly reduces the complexity of solving EFES patterns, and provides insightful guidance for the design process. To validate the efficacy of our proposed method, we construct three prototypes. The results indicate that the final model resonates at 1.96 GHz, achieving an electric field gain of 25 dB and an out-of-roundness of 2.4 dB. These findings underscore the effectiveness of our method in analyzing EFES patterns, highlighting its potential for future applications in the field.

基于特征模式分析的电场增强结构加载型全向里德堡原子传感器设计

丁振珂,刘燚,武博,杨凯,冉瑞冰,林沂,付云起
国防科技大学电子科学学院,中国长沙市,410073
摘要:电场增强结构(EFES)与里德堡原子传感器(RAS)的集成技术因其在量子测量系统中增强检测灵敏度的潜力而受到广泛关注。然而,目前关于EFES方向响应的研究仍然较稀缺,RAS的三维方向图分析依然是一个严峻的挑战。RAS主要作为接收设备,可被用于无损测量技术,对电场产生响应。然而,分析其接收方向图是一项复杂的任务,需要运用复杂的方法。为此,我们采用特征模式(CM)分析来说明RAS的全向性能。根据CM理论,接收方向图可以通过一系列模式电流及其相应的系数来计算。这些系数的解析表示消除了耗时的全波(FW)数值模拟的需求,而后者通常需要扫描大量角度参数才能生成EFES方向图。这一方法显著降低了解决EFES方向图的复杂性,并为设计过程提供了有意义的指导。为验证所提方法的有效性,构建了3个原型。结果表明,最终模型在1.96 GHz时共振,达到25 dB的电场增益和2.4 dB的不圆度。这些发现突显了我们的方法在EFES方向图分析中的有效性,展示了其在该领域的应用潜力。

关键词:里德伯原子传感器;特征模式;电场增强结构

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Adams JJ, Genovesi S, Yang BB, et al., 2022. Antenna element design using characteristic mode analysis: insights and research directions. IEEE Antenn Propag Mag, 64(2):32-40.

[2]Anderson DA, Paradis EG, Raithel G, 2018. A vapor-cell atomic sensor for radio-frequency field detection using a polarization-selective field enhancement resonator. Appl Phys Lett, 113(7):073501.

[3]Anderson DA, Sapiro RE, Raithel G, 2021. A self-calibrated SI-traceable Rydberg atom-based radio frequency electric field probe and measurement instrument. IEEE Trans Antenn Propag, 69(9):5931-5941.

[4]Bussey LW, Winterburn A, Menchetti M, et al., 2021. Rydberg RF receiver operation to track RF signal fading and frequency drift. J Lightw Technol, 39(24):7813-7820.

[5]Cardman R, Gonçalves LF, Sapiro RE, et al., 2020. Atomic 2D electric field imaging of a Yagi–Uda antenna near-field using a portable Rydberg-atom probe and measurement instrument. Adv Opt Technol, 9(5):305-312.

[6]Chen Y, Wang CF, 2015. Characteristic Modes: Theory and Applications in Antenna Engineering. John Wiley & Sons, Inc., Hoboken, USA.

[7]Choi S, Sarabandi K, 2018. A W-shaped antenna with spatial polarization variation for direction finding. IEEE Antenn Wirel Propag Lett, 17(12):2429-2433.

[8]Dicandia FA, Genovesi S, 2023. Design of a transmission-type polarization-insensitive and angularly stable polarization rotator by using characteristic modes theory. IEEE Trans Antenn Propag, 71(2):1602-1612.

[9]Dixon K, Nickerson K, Booth DW, et al., 2023. Rydberg-atom-based electrometry using a self-heterodyne frequency-comb readout and preparation scheme. Phys Rev Appl, 19(3):034078.

[10]Fan HQ, Kumar S, Sedlacek J, et al., 2015. Atom based RF electric field sensing. J Phys B Atom Mol Opt Phys, 48(20):202001.

[11]Grundmann L, Manteuffel D, 2021. Using characteristic modes for determining the incident field in a scattering problem. Proc IEEE Int Symp on Antennas and Propagation and USNC-URSI Radio Science Meeting, p.855-856.

[12]Harrington RF, 2001. Time-Harmonic Electromagnetic Fields. IEEE Press, New York, USA.

[13]Harrington RF, Mautz J, 1971. Theory of characteristic modes for conducting bodies. IEEE Trans Antenn Propag, 19(5):622-628.

[14]Holloway CL, Gordon JA, Schwarzkopf A, et al., 2014. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler–Townes splitting in Rydberg atoms. Appl Phys Lett, 104(24):244102.

[15]Holloway CL, Simons MT, Gordon JA, et al., 2019. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver. IEEE Antenn Wirel Propag Lett, 18(9):1853-1857.

[16]Holloway CL, Prajapati N, Artusio-Glimpse AB, et al., 2022. Rydberg atom-based field sensing enhancement using a split-ring resonator. Appl Phys Lett, 120(20):204001.

[17]Hu JL, Jiao YC, He YH, et al., 2023. Improvement of response bandwidth and sensitivity of Rydberg receiver using multi-channel excitations. EPJ Quant Technol, 10(1):51.

[18]Huang SD, Pan J, Luo YY, 2018. Study on the relationships between eigenmodes, natural modes, and characteristic modes of perfectly electric conducting bodies. Int J Antenn Propag, 2018(1):8735635.

[19]Jiao YC, Han XX, Fan JB, et al., 2019. Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication. Appl Phys Expr, 12(12):126002.

[20]Liu B, Zhang LH, Liu ZK, et al., 2022. Highly sensitive measurement of a Megahertz RF electric field with a Rydberg-atom sensor. Phys Rev Appl, 18(1):014045.

[21]Manteuffel D, Lin FH, Li T, et al., 2022. Characteristic mode-inspired advanced multiple antennas: intuitive insight into element-, interelement-, and array levels of compact large arrays and metantennas. IEEE Antenn Propag Mag, 64(2):49-57.

[22]Mao RQ, Lin Y, Yang K, et al., 2023. A high-efficiency fiber-coupled Rydberg-atom integrated probe and its imaging applications. IEEE Antenn Wirel Propag Lett, 22(2):352-356.

[23]Meyer DH, Cox KC, Fatemi FK, et al., 2018. Digital communication with Rydberg atoms and amplitude-modulated microwave fields. Appl Phys Lett, 112(21):211108.

[24]Ren K, 2022. Direction finding using a single antenna with blade modulation. Antenn Wirel Propag Lett, 21(5):873-877.

[25]Robinson AK, Prajapati N, Senic D, et al., 2021. Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor. Appl Phys Lett, 118(11):114001.

[26]Sandidge G, Santamaria-Botello G, Bottomley E, et al., 2024. Resonant structures for sensitivity enhancement of Rydberg-atom microwave receivers. IEEE Trans Microw Theory Techn, 72(4):2057-2066.

[27]Sedlacek JA, Schwettmann A, Kübler H, et al., 2012. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat Phys, 8(11):819-824.

[28]Sedlacek JA, Schwettmann A, Kübler H, et al., 2013. Atom-based vector microwave electrometry using Rubidium Rydberg atoms in a vapor cell. Phys Rev Lett, 111(6):063001.

[29]Shi G, Jia Y, Liu Y, et al., 2023. Theoretic study of antenna scattering problems based on characteristic modes and its applications in reducing antenna scattering. IEEE Trans Antenn Propag, 71(3):2098-2109.

[30]Simons MT, Artusio-Glimpse AB, Holloway CL, et al., 2021. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning. Phys Rev A, 104(3):032824.

[31]Song ZF, Liu HP, Liu XC, et al., 2019. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier. Opt Expr, 27(6):8848-8857.

[32]Wu B, Lin Y, Liao DW, et al., 2022. Design of locally enhanced electric field in dielectric loaded rectangular resonator for quantum microwave measurements. Electron Lett, 58(24):914-916.

[33]Wu B, Lin Y, Wu FC, et al., 2023. Quantum microwave electric field measurement technology based on enhancement electric filed resonator. Acta Phys Sin, 72(3):034204 (in Chinese).

[34]Wu B, Zhou YL, Ding ZK, et al., 2024. Eliminating sensing blind spots of field-enhanced Rydberg atomic antenna via an asymmetric parallel-plate resonator. EPJ Quant Technol, 11(1):30.

[35]Yang K, Sun ZS, Mao RQ, et al., 2022. Wideband Rydberg atom-based receiver for amplitude modulation radio frequency communication. Chin Opt Lett, 20(8):081203.

[36]Yang K, Mao RQ, An Q, et al., 2023a. Amplitude-modulated RF field Rydberg atomic sensor based on homodyne technique. Sens Actuat A Phys, 351:114167.

[37]Yang K, Mao RQ, An Q, et al., 2023b. Laser frequency locking method for Rydberg atomic sensing. Chin Opt Lett, 21(2):021407.

[38]Yang K, Mao RQ, He L, et al., 2023c. Local oscillator port embedded field enhancement resonator for Rydberg atomic heterodyne technique. EPJ Quant Technol, 10(1):23.

[39]Yao JW, An Q, Zhou YL, et al., 2022. Sensitivity enhancement of far-detuned RF field sensing based on Rydberg atoms dressed by a near-resonant RF field. Opt Lett, 47(20):5256-5259.

[40]Yuan SX, Jing MY, Zhang H, et al., 2024. Isotropic antenna based on Rydberg atoms. Opt Expr, 32(5):8379-8388.

[41]Zhang D, Chen YK, Yang SW, 2022. A self-decoupling method for antenna arrays using high-order characteristic modes. IEEE Trans Antenn Propag, 70(4):2760-2769.

[42]Zhang FS, Jin BH, Lan ZT, et al., 2023. Quantum wireless sensing: principle, design and implementation. Proc 29th Annual Int Conf on Mobile Computing and Networking, Article 44.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE